
Ontology-based Data Access Made Practical

Diego Calvanese

KRDB Research Centre for Knowledge and Data
Free University of Bozen-Bolzano, Italy

Department of Computing Science
Umeå University, Sweden

Ontopic s.r.l.

EDBT-INTENDED Summer School
4–9 July 2022 – Bordeaux (France)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Challenges in data management

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (1/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Variety, not volume, is driving data management initiatives
MIT Sloan Management Review (28 March 2016)

69%

25%

6%

Relative Importance

Variety
Volume
Velocity

http://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives/

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (2/123)

 http://sloanreview.mit.edu/article/variety-not-volume-is-driving-big-data-initiatives/

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

How much time is spent searching for the right data?

Important problem: searching for data and establishing its quality

Example: in oil&gas, engineers spend 30–70% of their time on this problem
(Crompton, 2008)

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (3/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Challenge: Accessing legacy data sources

Statoil (now Equinor) Exploration

Geologists at Statoil, prior to making decisions
on drilling new wellbores, need to gather
relevant information about previous drillings.

Slegge relational database:
• Terabytes of relational data
• 1,545 tables and 1727 views
• each with dozens of attributes
• consulted by 900 geologists

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (4/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Problem: Translating information needs

Information need expressed by geologists

In my geographical area of interest, return all pressure data tagged with key
stratigraphy information with understandable quality control attributes, and
suitable for further filtering.

To obtain the answer, this needs to be translated into SQL:
• Main table for wellbores has 38 columns (with cryptic names).
• To obtain pressure data requires a 4-table join with two additional filters.
• To obtain stratigraphic information requires a join with 5 more tables.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (5/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Problem: Translating information needs

We would obtain the following SQL query:

SELECT WELLBORE.IDENTIFIER, PTY_PRESSURE.PTY_PRESSURE_S,
STRATIGRAPHIC_ZONE.STRAT_COLUMN_IDENTIFIER, STRATIGRAPHIC_ZONE.STRAT_UNIT_IDENTIFIER

FROM WELLBORE,
PTY_PRESSURE,
ACTIVITY FP_DEPTH_DATA
LEFT JOIN (PTY_LOCATION_1D FP_DEPTH_PT1_LOC
INNER JOIN PICKED_STRATIGRAPHIC_ZONES ZS
ON ZS.STRAT_ZONE_ENTRY_MD <= FP_DEPTH_PT1_LOC.DATA_VALUE_1_O AND
ZS.STRAT_ZONE_EXIT_MD >= FP_DEPTH_PT1_LOC.DATA_VALUE_1_O AND
ZS.STRAT_ZONE_DEPTH_UOM = FP_DEPTH_PT1_LOC.DATA_VALUE_1_OU

INNER JOIN STRATIGRAPHIC_ZONE
ON ZS.WELLBORE = STRATIGRAPHIC_ZONE.WELLBORE AND
ZS.STRAT_COLUMN_IDENTIFIER = STRATIGRAPHIC_ZONE.STRAT_COLUMN_IDENTIFIER AND
ZS.STRAT_INTERP_VERSION = STRATIGRAPHIC_ZONE.STRAT_INTERP_VERSION AND
ZS.STRAT_ZONE_IDENTIFIER = STRATIGRAPHIC_ZONE.STRAT_ZONE_IDENTIFIER)

ON FP_DEPTH_DATA.FACILITY_S = ZS.WELLBORE AND
FP_DEPTH_DATA.ACTIVITY_S = FP_DEPTH_PT1_LOC.ACTIVITY_S,

ACTIVITY_CLASS FORM_PRESSURE_CLASS
WHERE WELLBORE.WELLBORE_S = FP_DEPTH_DATA.FACILITY_S AND

FP_DEPTH_DATA.ACTIVITY_S = PTY_PRESSURE.ACTIVITY_S AND
FP_DEPTH_DATA.KIND_S = FORM_PRESSURE_CLASS.ACTIVITY_CLASS_S AND
WELLBORE.REF_EXISTENCE_KIND = ’actual’ AND
FORM_PRESSURE_CLASS.NAME = ’formation pressure depth data’

This can be very time consuming, and requires
knowledge of the domain of interest,

a deep understanding of the database structure,
and general IT expertise.

This is also very costly!

Equinor loses 50.000.000e per year
only due to this problem!!

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (6/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Problem: Translating information needs

We would obtain the following SQL query:

SELECT WELLBORE.IDENTIFIER, PTY_PRESSURE.PTY_PRESSURE_S,
STRATIGRAPHIC_ZONE.STRAT_COLUMN_IDENTIFIER, STRATIGRAPHIC_ZONE.STRAT_UNIT_IDENTIFIER

FROM WELLBORE,
PTY_PRESSURE,
ACTIVITY FP_DEPTH_DATA
LEFT JOIN (PTY_LOCATION_1D FP_DEPTH_PT1_LOC
INNER JOIN PICKED_STRATIGRAPHIC_ZONES ZS
ON ZS.STRAT_ZONE_ENTRY_MD <= FP_DEPTH_PT1_LOC.DATA_VALUE_1_O AND
ZS.STRAT_ZONE_EXIT_MD >= FP_DEPTH_PT1_LOC.DATA_VALUE_1_O AND
ZS.STRAT_ZONE_DEPTH_UOM = FP_DEPTH_PT1_LOC.DATA_VALUE_1_OU

INNER JOIN STRATIGRAPHIC_ZONE
ON ZS.WELLBORE = STRATIGRAPHIC_ZONE.WELLBORE AND
ZS.STRAT_COLUMN_IDENTIFIER = STRATIGRAPHIC_ZONE.STRAT_COLUMN_IDENTIFIER AND
ZS.STRAT_INTERP_VERSION = STRATIGRAPHIC_ZONE.STRAT_INTERP_VERSION AND
ZS.STRAT_ZONE_IDENTIFIER = STRATIGRAPHIC_ZONE.STRAT_ZONE_IDENTIFIER)

ON FP_DEPTH_DATA.FACILITY_S = ZS.WELLBORE AND
FP_DEPTH_DATA.ACTIVITY_S = FP_DEPTH_PT1_LOC.ACTIVITY_S,

ACTIVITY_CLASS FORM_PRESSURE_CLASS
WHERE WELLBORE.WELLBORE_S = FP_DEPTH_DATA.FACILITY_S AND

FP_DEPTH_DATA.ACTIVITY_S = PTY_PRESSURE.ACTIVITY_S AND
FP_DEPTH_DATA.KIND_S = FORM_PRESSURE_CLASS.ACTIVITY_CLASS_S AND
WELLBORE.REF_EXISTENCE_KIND = ’actual’ AND
FORM_PRESSURE_CLASS.NAME = ’formation pressure depth data’

This can be very time consuming, and requires
knowledge of the domain of interest,

a deep understanding of the database structure,
and general IT expertise.

This is also very costly!

Equinor loses 50.000.000e per year
only due to this problem!!

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (6/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

How to address data access (and integration) challenges?

We combine three key ideas:

1 Use a global (or integrated) schema and map the data sources to the global schema.

2 Adopt a very flexible data model for the global schema
; Knowledge Graph whose vocabulary is expressed in an ontology.

3 Exploit virtualization, i.e., the KG is not materialized, but kept virtual.

This gives rise to the Virtual Knowledge Graph (VKG) approach to data access / integration,
also called Ontology-based Data Access / Integration (OBDA).
[Xiao, C., et al. 2018, IJCAI]

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (7/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Virtual Knowledge Graph (VKG) architecture

Mapping

VKG
Query

Query
Result Ontology

Data 
Sources•••

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (8/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Why an ontology?

An ontology is a structured formal representation of
concepts and their relationships that are relevant for the
domain of interest.

Mapping

Data 
Sources

Query Query
Result

Ontology
VKG

•••

• In the VKG setting, the ontology has a twofold purpose:
• It defines a vocabulary of terms to denote classes and properties that are familiar to the user.
• It extends the data in the sources with background knowledge about the domain of interest, and this

knowledge is machine processable.

• One can make use of custom-built domain ontologies.
• In addition, one can rely on standard ontologies, which are available for many domains.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (9/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Why a Knowledge Graph for the global schema?

The traditional approach to data integration adopts a
relational global schema.

Mapping

Data 
Sources

Query Query
Result

Ontology
VKG

•••

A Knowledge Graph, instead:

• Does not require to commit early on to a specific structure.
• Can better accommodate heterogeneity.
• Can better deal with missing / incomplete information.
• Does not require complex restructuring operations to accommodate new information or new data

sources.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (10/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Why mappings?

The traditional approach to data integration relies on
mediators, which are specified through complex code.

Mapping

Data 
Sources

Query Query
Result

Ontology
VKG

•••

Mappings, instead:

• Provide a declarative specification, and not code.
• Are easier to understand, and hence to design and to maintain.
• Support an incremental approach to integration.
• Are machine processable, hence are used in query answering and for query optimization.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (11/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Why virtualization?

Materialized data integration relies on extract-transform-load
(ETL) operations, to load data from the sources into an
integrated data store / data warehouse / materialized KG.

Mapping

Data 
Sources

Query Query
Result

Ontology
VKG

•••

In the virtual approach, instead:

• The data stays in the sources and is only accessed at query time.
• No need to construct a large and potentially costly materialized data store and keep it up-to-date.
• Hence the data is always fresh wrt the latest updates at the sources.
• One can rely on the existing data infrastructure and expertise.
• There is better support for an incremental approach to integration.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (12/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)

3 Optimizing Query Answering in VKGs

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (12/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)
Representing Data in RDF and RDFS
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database
Formalizing the VKG Framework

3 Optimizing Query Answering in VKGs

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (12/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Incomplete information

We are in a setting of incomplete information!!!

Incompleteness is introduced:
• by data sources, in general assumed to be incomplete;
• by domain constraints encoded in the ontology.

Mapping

Data 
Sources

Query Query
Result

Ontology
VKG

•••

Plus:
Ontologies are logical theories, and
hence perfectly suited to deal with
incomplete information!

m7
m6

m5
m3

m4
m2

m1

=

Ontology

Minus:

Query answering amounts to logical
inference, and hence is significantly
more challenging.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (13/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Components of the VKG framework

We consider now the main components that make up the
VKG framework, and the languages used to specify them.

In defining such languages, we need to consider the
tradeoff between expressive power and efficiency,
where the key point is efficiency with respect to the data.

Mapping

Data 
Sources

Query Query
Result

Ontology
VKG

•••

The W3C has standardized languages that are suitable for VKGs:

1 Knowledge graph: expressed in RDF [W3C Rec. 2014] (v1.1)

2 Ontology O: expressed in OWL 2 QL [W3C Rec. 2012]

3 MappingM: expressed in R2RML [W3C Rec. 2012]

4 Query: expressed in SPARQL [W3C Rec. 2013] (v1.1)

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (14/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)
Representing Data in RDF and RDFS
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database
Formalizing the VKG Framework

3 Optimizing Query Answering in VKGs

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (14/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Resource Description Framework (RDF)

• RDF is a language standardized by the W3C for representing information
[W3C Rec. 2004] (v1.0) and [W3C Rec. 2014] (v1.1).

• RDF is a graph-based data model, where information is represented as (labeled) nodes
connected by (labeled) edges.

• Nodes have three different forms:
• literal: denotes a constant value, with an associated datatype;
• IRI (for internationalized resource identifier): denotes a resource (i.e., an object), for which the IRI acts

as an identifier;
• blank node: represents an anonymous object.

• An IRI might also denote a property, connecting an object to a literal, or connecting two objects.

See also https://www.w3.org/TR/rdf11-concepts/ for details.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (15/123)

https://www.w3.org/TR/rdf11-concepts/

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

RDF triples
RDF provides a description of the domain of interest in terms of triples:

Subject Predicate Object

<http://unibz.inf.di/data#person/2>

<http://xmlns.com//foaf/0.1/name>

"John"ˆˆxsd:string

Triple elements: resources denoted by global identifiers (called IRIs)

1 Subject: IRI of the described resource

2 Predicate: IRI of the property

3 Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix : <http://unibz.inf.di/data#>

@base <http://unibz.inf.di/>

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (16/123)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

RDF triples
RDF provides a description of the domain of interest in terms of triples:

Subject Predicate Object

<:person/2>

foaf:name

"John"ˆˆxsd:string

Triple elements: resources denoted by global identifiers (called IRIs)

1 Subject: IRI of the described resource

2 Predicate: IRI of the property

3 Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix : <http://unibz.inf.di/data#>

@base <http://unibz.inf.di/>

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (16/123)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

RDF triples
RDF provides a description of the domain of interest in terms of triples:

Subject Predicate Object

<data#person/2>

foaf:name

"John"ˆˆxsd:string

Triple elements: resources denoted by global identifiers (called IRIs)

1 Subject: IRI of the described resource

2 Predicate: IRI of the property

3 Object: attribute value or IRI of another resource

Prefixes: useful abbreviations and/or references to external information
@prefix foaf: <http://xmlns.com/foaf/0.1/>

@prefix : <http://unibz.inf.di/data#>

@base <http://unibz.inf.di/>

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (16/123)

<http://xmlns.com/foaf/0.1/>
http://unibz.inf.di/data#

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

RDF – Examples

Class membership:

RDF triple <uni2/p/25> rdf:type :Professor

Fact Professor(uni2/p/25)

Note: This is typically abbreviated as

RDF triple <uni2/p/25> a :Professor

Data property of an individual:

RDF triple <uni2/p/25> :lastName "Artale"

Fact lastName(uni2/p/25, ”Artale”)

Object property of an individual:

RDF triple <uni2/p/25> :teaches <uni2/c/7>

Fact teaches(uni2/p/25, uni2/c/7)

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (17/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

RDF graph – Example

<uni2/p/25> rdf:type :Professor

<uni2/p/25> foaf:lastName "Artale"

<uni2/p/25> :teaches <uni2/c/5>

...

We can represent such a set of facts graphically:

Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (18/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Additional RDF features

RDF has additional features that we do not cover here:

• datatypes

• blank nodes

• named graphs

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (19/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)
Representing Data in RDF and RDFS
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database
Formalizing the VKG Framework

3 Optimizing Query Answering in VKGs

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (19/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (20/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (20/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

∀x. Actor(x)→ Staff(x)
∀x. SeriesActor(x)→ Actor(x)
∀x. MovieActor(x)→ Actor(x)
∀x. SeriesActor(x)→ ¬MovieActor(x)

∀x. Staff(x)→ ∃y. ssn(x, y)
∀y.∃x. ssn(x, y)→ xsd:int(y)
∀x, y, y′. ssn(x, y) ∧ ssn(x, y′)→ y = y′

∀x.∃y. actsIn(x, y)→ MovieActor(x)
∀y.∃x. actsIn(x, y)→ Movie(y)
∀x. MovieActor(x)→ ∃y. actsIn(x, y)
∀x. Movie(x)→ ∃y. actsIn(y, x)
∀x, y. actsIn(x, y)→ playsIn(x, y)
· · ·

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (20/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

What is an ontology?

• An ontology conceptualizes a
domain of interest in terms of
concepts/classes,
(binary) relations, and
their properties.

• It typically organizes the concepts
in a hierarchical structure.

• Ontologies are often represented
as graphs.

• However, an ontology is actually a
logical theory, expressed in a
suitable fragment of first-order
logic, or better, in description
logics.

Actor ⊑ Staff
SeriesActor ⊑ Actor
MovieActor ⊑ Actor
SeriesActor ⊑ ¬MovieActor

Staff ⊑ ∃ssn
∃ssn− ⊑ xsd:int

(funct ssn)

∃actsIn ⊑ MovieActor
∃actsIn− ⊑ Movie

MovieActor ⊑ ∃actsIn
Movie ⊑ ∃actsIn−

actsIn ⊑ playsIn
· · ·

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (20/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

The OWL 2 QL ontology language

• OWL 2 QL is one of the three standard profiles of OWL 2. [W3C Rec. 2012]

• Is derived from the DL-LiteR description logic (DL) of the DL-Lite-family [C., De Giacomo, et al.
2007].

• Is considered a lightweight ontology language:
• controlled expressive power
• efficient inference

• Optimized for accessing large amounts of data (i.e., for data complexity):
• Queries over the ontology can be rewritten into SQL queries over the underlying relational database

(First-order rewritability of query answering).
• Consistency of ontology and data can also be checked by executing SQL queries (i.e., it is also

first-order rewritable).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (21/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Classes and properties in OWL 2 QL
All ontology languages based on OWL 2 (and hence also OWL 2 QL), provide three types of elements
to construct an ontology:

• Classes (also called concepts), which allow one to structure the domain of interest, by grouping
in a class objects with common properties.
Examples: Movie, Staff, Actor, SeriesActor, . . .

• Data properties (also called attributes), which are binary relations that relate objects to values
(or literals, in RDF terminology).
Examples:
• title, associating a string to a Movie;
• ssn, associating an integer to a Person.

• Object properties (also called roles), which are binary relations between objects.
Examples:
• actsIn, relating a MovieActor to a Movie;
• worksFor, relating an Employee to a Project.

In the following, to depict an OWL 2 QL ontology, we make use of a graphical notation inspired by
the one for UML class diagrams.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (22/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

OWL 2 QL knowledge bases
An OWL 2 QL knowledge base (KB) consists of two parts:

An ontology O modeling the schema level information.
• Contains the declarations of the classes, data properties, and object properties of the ontology.

This constitutes the vocabulary with which we can then query the ontology.
• Contains the axioms that capture the domain knowledge.
• These axioms express the conditions that must hold for the classes and properties in the

ontology.

An RDF graph G, modeling the extensional level information (i.e., facts).

The RDF graph G consists of triples that express membership assertions of the following forms:
• An individual <a> belongs to a class :C: <a> rdf:type :C .

• A pair individual <a> and literal <l> belongs to a data property :A: <a> :A <l> .

• A pair of individuals <a1>, <a2> belongs to an object property :P: <a1> :P <a2> .

Note: As we will see later, in the VKG setting, the RDF graph of a KB is not given explicitly, but is
(usually) defined implicitly through the database(s) and the mappings.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (23/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Axioms in an OWL 2 QL ontology

In an OWL 2 QL ontology, one can express knowledge about the classes and properties in the domain
of interest by means of the following types of axioms.

Axiom type OWL syntax DL syntax
Class declaration :Actor rdf:type owl:Class Actor
Object property decl. :actsIn rdf:type owl:ObjectProperty actsIn
Data property declaration :title rdf:type owl:DatatypeProperty title

Subclass assertion :MovieActor rdfs:subClassOf :Actor MovieActor ⊑ Actor
Class disjointness :Actor owl:disjointWith :Movie Actor ⊑ ¬Movie
Domain of a property :actsIn rdfs:domain :MovieActor ∃actsIn ⊑ MovieActor
Range of a property :actsIn rdfs:range :Movie ∃actsIn− ⊑ Movie
Mandatory participation owl:someValuesFrom in superclass expression MovieActor ⊑ ∃actsIn

Subproperty assertion :actsIn rdfs:subPropertyOf :playsIn actsIn ⊑ playsIn
Inverse properties :actsIn owl:inverseOf :hasActor actsIn ≡ hasActor−

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (24/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Syntax and semantics of OWL 2 QL axioms

Axiom type OWL Syntax DL Syntax FOL

Class declaration C rdf:type owl:Class C C(x)
Object property declaration P rdf:type owl:ObjectProperty P P(x, y)
Data property declaration A rdf:type owl:DatatypeProperty A A(x, y)

Subclass assertion C1 rdfs:subClassOf C2 C1 ⊑ C2 ∀x. C1(x)→ C2(x)
Class disjointness C1 owl:disjointWith C2 C1 ⊑ ¬C2 ∀x. C1(x)→ ¬C2(x)
Domain of a property P rdfs:domain C1 ∃P ⊑ C1 ∀x. (∃y. P(x, y))→ C1(x)
Range of a property P rdfs:range C2 ∃P− ⊑ C2 ∀y. (∃x. P(x, y))→ C2(y)
Mandatory participation using owl:someValuesFrom C ⊑ ∃R ∀x. C(x)→ ∃y. R(x, y)

Subproperty assertion P1 rdfs:subPropertyOf R2 P1 ⊑ R2 ∀x, y. P1(x, y)→ R2(x, y)
Inverse property P2 owl:inverseOf P1 P1 ≡ P−2 ∀x, y. P1(x, y)↔ P2(y, x)

• We have used R to denote either an object property P or the inverse P− of an object property.

• We have listed the axioms involving object properties, but OWL 2 QL allows for analogous axioms involving
data properties, except that we might not use the inverse of a data property.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (25/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Impact of disjointness and functionalty on query answering

• Disjointness of classes and of properties cannot be expressed in RDFS, but can be expressed in
OWL 2 QL.

• Functionality of properties cannot be expressed in OWL 2 QL, but can be expressed in OWL 2
(which is a much more powerful ontology language).

• However, both disjointness and functionality are supported by VKG systems such as Ontop.

• These constructs have an impact on consistency, i.e., they might be violated by the data and
thus lead to an RDF graph that is inconsistent with the ontology.

• It turns out, however, that neither disjointness nor functionality affect query answering, as long as
the ontology and the data are consistent. This means that they are actually ignored by the query
evaluation algorithm.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (26/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Representing OWL 2 QL ontologies as UML class diagrams/ER schemas
There is a close correspondence between OWL 2 QL and conceptual modeling formalisms, such as
UML class diagrams and ER schemas. [Lenzerini & Nobili 1990; Bergamaschi & Sartori 1992; Borgida
1995; C., Lenzerini, et al. 1999; Borgida & Brachman 2003; Berardi et al. 2005; Queralt et al. 2012].

SeriesActor ⊑ Actor
SeriesActor ⊑ ¬MovieActor
∃playsIn ⊑ Actor
∃playsIn− ⊑ Play

MovieActor ⊑ ∃actsIn
actsIn ⊑ playsIn

· · ·

rdfs:subClassOf

owl:disjointWith

rdfs:domain

rdfs:range

owl:someValuesFrom

rdfs:subPropertyOf

subclass
disjointness
domain
range
mandatory participation
sub-association

Actor
name: String

SeriesActor MovieActor

Play
title: String

Movie
rating: Float

actsIn

1..*

playsIn

In fact, to visualize an OWL 2 QL
ontology, we could have used
standard UML class diagrams,
instead of the specific graphical
notation that we have introduced.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (27/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Representing OWL 2 QL ontologies as UML class diagrams/ER schemas
There is a close correspondence between OWL 2 QL and conceptual modeling formalisms, such as
UML class diagrams and ER schemas. [Lenzerini & Nobili 1990; Bergamaschi & Sartori 1992; Borgida
1995; C., Lenzerini, et al. 1999; Borgida & Brachman 2003; Berardi et al. 2005; Queralt et al. 2012].

SeriesActor ⊑ Actor
SeriesActor ⊑ ¬MovieActor
∃playsIn ⊑ Actor
∃playsIn− ⊑ Play

MovieActor ⊑ ∃actsIn
actsIn ⊑ playsIn

· · ·

rdfs:subClassOf

owl:disjointWith

rdfs:domain

rdfs:range

owl:someValuesFrom

rdfs:subPropertyOf

subclass
disjointness
domain
range
mandatory participation
sub-association

Actor
name: String

SeriesActor MovieActor

Play
title: String

Movie
rating: Float

actsIn

1..⋆▶

playsIn
▶

{disjoint}

In fact, to visualize an OWL 2 QL
ontology, we could have used
standard UML class diagrams,
instead of the specific graphical
notation that we have introduced.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (27/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)
Representing Data in RDF and RDFS
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database
Formalizing the VKG Framework

3 Optimizing Query Answering in VKGs

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (27/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query answering – Which query language to use

Querying under incomplete information

Query answering is not simply query evaluation, but a form of logical
inference, and requires reasoning.

Two borderline cases for choosing the language for querying ontologies:

1 Use the ontology language as query language.
• Ontology languages are tailored for capturing intensional relationships.
• They are quite poor as query languages.

2 Use Full SQL (or equivalently, first-order logic).
• Problem: in a setting with incomplete information, query answering is undecidable (FOL validity).

Conjunctive queries – Are concretely represented in SPARQL

A good tradeoff is to use conjunctive queries (CQs) or unions of CQs (UCQs), corresponding to
SQL/relational algebra (union) select-project-join queries.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (28/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

SPARQL query language
• Is the standard query language for RDF data. [W3C Rec. 2008, 2013]
• Core query mechanism is based on graph matching.

SELECT ?p ?t
WHERE { ?p rdf:type Professor .

?p teaches ?c .

?c rdf:type Course .

?c title ?t .

}

?p

Professor

?c

Course

?t

rdf:type

teaches

rdf:type

title

Additional language features (SPARQL 1.1):
• UNION: matches one of alternative graph patterns
• OPTIONAL: produces a match even when part of the pattern is missing
• complex FILTER conditions
• GROUP BY, to express aggregations
• MINUS, to remove possible solutions
• property paths (regular expressions)
• · · ·

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (29/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

SPARQL Basic Graph Patterns

Basic Graph Pattern (BGP) are the simplest form of SPARQL query, asking for a pattern in the RDF
graph, made up of triple patterns.

Example: BGP

SELECT ?p ?ln ?c ?t
WHERE {
?p :lastName ?ln .

?p :teaches ?c .

?c :title ?t .

}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
p ln c t

<uni2/p/25> "Artale" <uni2/c/5> "Databases"

<uni2/p/25> "Artale" <uni2/c/7> "KR"

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (30/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Abbreviated syntax for Basic Graph Patterns

We can use an abbreviated syntax for BGPs, that avoids repeating the subject of triple patterns.

Example: BGP

SELECT ?p ?ln ?c ?t ?r
WHERE {
?p :lastName ?ln .

?p :teaches ?c .

?c :title ?t .

?c :room ?r .

}

Example: BGP with abbreviated syntax

SELECT ?p ?ln ?c ?t ?r
WHERE {
?p :lastName ?ln ;

:teaches ?c .

?c :title ?t ;

:room ?r .

}

When we end a triple pattern with a ’;’ (instead of ’.’), the next triple pattern uses the same subject
(which therefore is not repeated).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (31/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Projecting out variables in a SPARQL query

A query may also return only a subset of the variables used in the BGP.

Example: BGP with projection

SELECT ?ln ?t
WHERE {
?p :lastName ?ln .

?p :teaches ?c .

?c :title ?t .

}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
ln t

"Artale" "Databases"

"Artale" "KR"

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (32/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

BGPs vs. conjunctive queries

We can write queries using the more compact and abstract syntax of conjunctive queries (CQs).

Example: BGP

SELECT ?p ?ln ?c ?t
WHERE {
?p :lastName ?ln .

?p :teaches ?c .

?c :title ?t .

}

vs. conjunctive query

q(p, ln, c, t) ← lastName(p, ln),
teaches(p, c),
title(c, t)

A conjunctive query q has the form q(⃗x)← p1 (⃗y1), . . . , p(⃗yk) where

• q(⃗x) is called the head of q,
• p1 (⃗y1), . . . , p(⃗yk) is a conjunction of atoms called the body of q,
• all variables x⃗ in the head are among y⃗1, . . . , y⃗k, and
• the variables in y⃗1, . . . , y⃗k that are not among x⃗ are existentially quantified.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (33/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

BGPs vs. conjunctive queries (cont.)

Example: BGP with projection

SELECT ?ln ?t
WHERE {
?p :lastName ?ln .

?p :teaches ?c .

?c :title ?t .

}

vs. conjunctive query with existential variables

q(ln, t) ← lastName(p, ln),
teaches(p, c),
title(c, t)

But there is a difference in semantics when we have an ontology:
• In a SPARQL query, all variables, including those that are projected out, must match nodes of the

RDF graph.
• In a conjunctive query, the existentially quantified variables can also match nodes that are

existentially implied by the axioms of the ontology.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (34/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

BGPs vs. conjunctive queries – Example

Consider the KB ⟨O,A⟩, where the ontology is O = { C ⊑ ∃P } and the RDF graph is A = { C(a) }.
Consider further the following SPARQL BGP and the corresponding conjunctive query.

SPARQL query that has the form of a BGP

SELECT ?x WHERE { ?x rdf:type :C . ?x :P ?y . }

Conjunctive query

q(x) ← C(x), P(x, y)

Every modelM of ⟨O,A⟩ contains the fact C(a) (recall that aM = a), and since C ⊑ ∃P ∈ O also a
fact P(a, o), for some (existentially implied) object o. For example, the following are models of ⟨O,A⟩:

• M1, with facts C(a) and P(a, o1);

• M2, with facts C(a) and P(a, o2);

• M3, with facts C(a), P(a, o1), and P(a, o3);

• M4, with facts C(a) and P(a, a);

• · · ·

• · · ·

Hence, for every modelM of ⟨O,A⟩, there is a homomorphism from the body of the conjunctive
query q toM that maps x to a. (Therefore, we have that a ∈ cert(q, ⟨O,A⟩). – See later.)
Instead, even in the presence of an ontology, the SPARQL query must match on the RDF graph A to
produce an answer. Since A contains only C(a), the answer to the SPARQL query is empty.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (35/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Extending BGPs with OPTIONAL

We might want to add information when available, but not reject a solution when some part of the
query does not match.

Example: BGP with OPTIONAL

SELECT ?p ?fn ?ln
WHERE {
?p :lastName ?ln .

OPTIONAL {
?p :firstName ?fn .

}

}

When evaluated over the RDF graph
Professor

<uni2/p/25> <uni2/p/38>

"Artale"

<uni2/c/7> <uni2/c/5>

"Anna" "Rossi"

"KR" "Databases"

rdf:type rdf:type

:lastName :teaches
:teaches

:givesLab

:firstName

:lastName

:title :title

. . . the query returns:
p fn ln

<uni2/p/25> "Artale"

<uni2/p/38> "Anna" "Rossi"

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (36/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

SPARQL algebra

We have just seen the following features of the SPARQL algebra:
• Basic Graph Patterns
• OPTIONAL

The overall algebra has additional features:
• UNION

• ORDER BY, LIMIT, OFFSET
• FILTER conditions
• GROUP BY, to express aggregations and support aggregation operators
• MINUS, to remove possible solutions
• path expressions, corresponding to regular expressions

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (37/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)
Representing Data in RDF and RDFS
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database
Formalizing the VKG Framework

3 Optimizing Query Answering in VKGs

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (37/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Use of mappings

In the VKG framework, the mapping encodes how the data in the sources should be used to create
the Virtual Knowledge Graph, which is formulated in the vocabulary of the ontology.

VKG defined from the mapping and the data.
• Queries are answered with respect to the ontology and

the data of the VKG.
• The data of the VKG is not materialized (it is virtual!).
• Instead, the information in the ontology and the

mapping is used to translate queries over the ontology
into queries formulated over the sources.

Note: The graph is always up to date wrt the data sources.

MappingData 
Sources

Query Query
Result

Ontology
VKG

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (38/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mismatch between data layer and ontology

Impedance mismatch
• Relational databases store values.
• Knowledge bases / ontologies represent both objects and values.

We need to construct the ontology objects from the database values.

Proposed solution

The specification of how to construct the ontology objects that populate the virtual knowledge
graph from the database values is embedded in the mapping between the data sources and the
ontology.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (39/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

VKG mapping

The mapping consists of a set of assertions of the form:

Qsql (⃗x) ⇝ Ψ(⃗t, x⃗)

• Qsql (⃗x) is the source query expressed in SQL.
• Ψ(⃗t, x⃗) is the target, consisting of a set of triple patterns (i.e., atoms) that refer to the classes

and properties of the ontology and make use of the answer variables x⃗ of the SQL query.

To address the impedance mismatch, in the target query:
• we specify how to construct valid IRIs (that act as object identifiers), by concatenating database

values and string constants;
• to refer to a database value, we use an answer variable of the source query;
• we call a term that constructs an IRI by referring to answer variables of the source query, an

IRI-template.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (40/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Triple patterns and IRI-templates

Intuition behind the mapping

The answers returned by the SQL query in the source-part of the mapping are used to create, via the
IRI-templates, the objects (and values) that populate the classes / properties in the target part.

More precisely:
• Each triple pattern in the target part has one of the forms:

iri1 (⃗x1) rdf:type C where C is a class of the ontology, or
iri1 (⃗x1) prop iri2 (⃗x2) where prop is a (data or object) property of the ontology.

• For each answer tuple a⃗ returned by the source query Qsql (⃗x) (when evaluated over the
database), the iri-template irii (⃗xi) generates an object / value irii(a⃗i) of the VKG.

• Such objects / values are then used to populate the classes and properties of the ontology
according to what specified in the target part of the mapping.

In this way we provide a solution to the impedance mismatch problem.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (41/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

A concrete mapping language
We describe the concrete mapping language adopted by the Ontop system.

In the Ontop mapping language, each mapping assertion is made up of three parts:
• A mapping identifier, which is convenient to refer to a specific mapping.
• The source part, which is a regular SQL query over the data source(s).
• The target part, which is a set of triple patterns that make use of IRI-templates.

In the target part, the answer variables of the source part are enclosed in {. . . }.

Mapping m1

• Mapping identifier: m1
• Source part:
SELECT mcode, mtitle
FROM MOVIE
WHERE type = "m"

• Target part:
:m/{mcode} rdf:type :Movie .

:m/{mcode} :title {mtitle} .

Mapping m2

• Mapping identifier: m2
• Source part:
SELECT M.mcode, A.acode
FROM MOVIE M, ACTOR A
WHERE M.mcode = A.pcode
AND M.type = "m"

• Target part:
:a/{acode} :actsIn :m/{mcode} .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (42/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping language – Example

Ontology O:

Actor
name: String

SeriesActor MovieActor

Play
title: String

Movie
rating: Float

actsIn

1..*

playsIn

MappingM:
m1: SELECT mcode, mtitle FROM MOVIE
WHERE type = "m"
⇝ :m/{mcode} rdf:type :Movie .
:m/{mcode} :title {mtitle} .

m2: SELECT M.mcode, A.acode FROM MOVIE M, ACTOR A
WHERE M.mcode = A.pcode AND M.type = "m"
⇝ :a/{acode} :actsIn :m/{mcode} .

Database D:
MOVIE

mcode mtitle myear type · · ·

5118 The Matrix 1999 m · · ·

8234 Altered Carbon 2018 s · · ·

2281 Blade Runner 1982 m · · ·

ACTOR

pcode acode aname · · ·

5118 438 K. Reeves · · ·

5118 572 C.A. Moss · · ·

2281 271 H. Ford · · ·

The mappingM applied to database D generates the virtual knowledge graphM(D):
:m/5118 rdf:type :Movie . :m/5118 :title "The Matrix" .

:m/2281 rdf:type :Movie . :m/2281 :title "Blade Runner" .

:a/438 :actsIn :m/5118 . :a/572 :actsIn :m/5118 . :a/271 :actsIn :m/2281 .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (43/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Standard mapping languages

Several proposals for concrete languages to map a relational DB to an ontology:
• They assume that the ontology is populated in terms of RDF triples.
• Some template mechanism is used to specify the triples to instantiate.

Examples: D2RQ1, SML2, Ontop3

R2RML
• Most popular RDB to RDF mapping language
• W3C Recommendation 27 Sep. 2012, http://www.w3.org/TR/r2rml/

• R2RML mappings are themselves expressed as RDF graphs and written in Turtle syntax.

1http://d2rq.org/d2rq-language
2http://sparqlify.org/wiki/Sparqlification_mapping_language
3https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (44/123)

http://www.w3.org/TR/r2rml/
http://d2rq.org/d2rq-language
http://sparqlify.org/wiki/Sparqlification_mapping_language
https://github.com/ontop/ontop/wiki/ontopOBDAModel#Mapping_axioms

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)
Representing Data in RDF and RDFS
Representing Ontologies in OWL 2 QL
Query Language – SPARQL
Mapping an Ontology to a Relational Database
Formalizing the VKG Framework

3 Optimizing Query Answering in VKGs

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (44/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

VKGs: Formalization
Ontology

Data
Sources

. . .

. . .

. . .

. . .

Query

Result

To formalize VKGs, we distinguish between the intensional and the
extensional level information.

A VKG specification is a triple P = ⟨O,M,S⟩, where:
• O is an ontology (expressed in OWL 2 QL),
• S is a (possibly federated) relational database schema for the data sources, possibly with

integrity constraints,
• M is a set of (R2RML) mapping assertions between O and S.

A VKG instance is a pair ⟨P,D⟩, where
• P = ⟨O,M,S⟩ is a VKG specification, and
• D is a (possibly federated) relational database compliant with S.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (45/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Semantics of VKGs

Ontology

Virtual Knowledge Graph

Data
Sources

. . .

. . .

. . .

. . .

Query Result

Remember:
• The mappingM generates from the data D in the sources a

virtual knowledge graphV =M(D).
• The set of constants that can appear inV consists of:

• values obtained directly from the database, and
• IRIs, which are constructed by applying the iri function to string

constants and database values.

We use CV, i.e., CM(D), to denote such set of constants.

A first-order interpretation I of the ontology predicates and the
constants in CM(D) is a model of ⟨P,D⟩ if

• it satisfies all axioms in O, and
• contains all facts inM(D), i.e., retrieved from D throughM.

Note:
• In general, ⟨P,D⟩ has infinitely many models, and some of these might be infinite.
• However, for query answering, we do not need to compute such models.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (46/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query answering in VKGs – Certain answers

In VKGs, we want to answer queries formulated over the ontology, by using the data provided by the
data sources through the mapping.

Consider our formalization of VKGs and a VKG instance J .

Certain answers cert(q,J) – Intuition

Given a VKG instance J and a query q over J , the certain answers cert(q,J) to q over J are those
answers to q that hold in every model of J .

Certain answers cert(q,J) – Formal definition

Given a VKG instance J = ⟨P,D⟩ and a query q over J , a tuple c⃗ of constants in CM(D) is a certain
answer to q over J , i.e., c⃗ ∈ cert(q,J), if for every model I of J we have that c⃗ ∈ q(I).

Note: Each certain answer c⃗ is a tuple of constants in CM(D), but when we evaluate q over an interpretation I, it
returns tuples of elements of ∆I. Therefore, we should actually require that c⃗I ∈ q(I), and not that c⃗ ∈ q(I).
However, due to the standard names assumption, we have that c⃗I = c⃗, so the two conditions are equivalent.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (47/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

First-order rewritability

To make computing certain answers viable in practice, the VKG setting relies on reducing it to
evaluating SQL (i.e., first-order logic) queries over the data.

Consider a VKG specification P = ⟨O,M,S⟩.

First-order rewritability

A query r(⃗x) is a first-order rewriting of a query q(⃗x) with respect to P if, for every source DB D,
certain answers to q(⃗x) over ⟨P,D⟩ = answers to r(⃗x) over D.

For OWL 2 QL ontologies and R2RML mappings,
(core) SPARQL queries are first-order rewritable.

In other words, in VKGs, we can compute the certain answers to a SPARQL query by
evaluating over the sources its rewriting, which is a SQL query.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (48/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Computational complexity of query answering

Theorem [C., De Giacomo, et al. 2007; Poggi et al. 2008; Artale et al. 2009]

For OWL 2 QL (or DL-Lite) VKG instances ⟨P,D⟩, with P = ⟨O,M,S⟩, query answering for UCQs /
SPARQL queries is:

1 Very efficiently tractable, i.e., in AC0, in the size of the database D.

2 Efficiently tractable, , i.e., in LogSpace, in the size of the ontology O and the mappingM.

3 Exponential, more precisely NP-complete, in the size of the query.

In theory this is not bad, since this is the complexity of evaluating CQs in relational DBs.

Note: The AC0 result is a consequence of the fact that query answering in such a setting can be
reduced to evaluating a SQL query over the relational database D.

Can we go beyond DL-Lite and maintain the same complexity results?

Essentially no! By adding essentially any additional constructs of OWL, we lose first-order rewritability
and hence these nice computational properties. [C., De Giacomo, et al. 2006, 2013]

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (49/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)

3 Optimizing Query Answering in VKGs
Query rewriting wrt an OWL 2 QL ontology
Query unfolding wrt a mapping
Mapping saturation
Optimization of query reformulation

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (49/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query answering via query reformulation – Conceptual framework

Ontology

Mappings

Data
Sources

. . .
. . .

. . .

. . .

Ontological Query q

Rewritten Query

SQLRelational Answer

Ontological Answer

qresult

Rewriting

Unfolding

Evaluation

Result Translation

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (50/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query answering via query reformulation – Optimizations needed

The above conceptual framework is realized as follows.

Computing certain answers to a SPARQL query q over a VKG instance ⟨P,D⟩, with P = ⟨O,M,S⟩:

1 Compute the perfect rewriting of q w.r.t. O.

2 Unfold the perfect rewriting w.r.t. the mappingM.

3 Optimize the unfolded query, using database constraints.

4 Evaluate the resulting SQL query over D.

Steps 1 – 3 are collectively called query reformulation.

We analyze now these steps more in detail.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (51/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)

3 Optimizing Query Answering in VKGs
Query rewriting wrt an OWL 2 QL ontology
Query unfolding wrt a mapping
Mapping saturation
Optimization of query reformulation

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (51/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Rewriting step

The rewriting Step 1 deals with the knowledge encoded by the axioms of the ontology:
• hierarchies of classes and of properties;
• objects that are existentially implied by such axioms: existential reasoning.

We illustrate the need for dealing with these two aspects with two examples.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (52/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Dealing with hierarchies

Suppose that every graduate student is a student, i.e.,

GraduateStudent ⊑ Student

and john is a graduate student: GraduateStudent(john).

What is the answer to the following query, asking for all students?

q(x) ← Student(x)

In SPARQL: SELECT ?x WHERE { ?x a Student . }

The answer should be john, since being a graduate student, he is also a student.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (53/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Dealing with existential reasoning

Suppose that every student is supervised by some professor, i.e.,

Student ⊑ ∃isSupervisedBy.Professor

and john is a student: Student(john).

What is the answer to the following query, asking for all individuals supervised by some professor?

q(x) ← isSupervisedBy(x, y), Professor(y)

In SPARQL: SELECT ?x WHERE { ?x isSupervisedBy [a Professor] . }

The answer should be john, even though we don’t know who is John’s supervisor (under existential
reasoning).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (54/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

The query rewriting algorithm

The query rewriting algorithm takes into account hierarchies and existential reasoning, by
“compiling” the axioms of the ontology into the query.

Example

Consider the ontology axioms: Student ⊑ ∃isSupervisedBy.Professor
GraduateStudent ⊑ Student

Using these axioms, the rewriting algorithm rewrites the query

q(x) ← isSupervisedBy(x, y), Professor(y)

into a union of conjunctive queries (or a SPARQL union query):
q(x) ← isSupervisedBy(x, y), Professor(y)
q(x) ← Student(x)
q(x) ← GraduateStudent(x)

Therefore, over the data Student(john), the rewritten query returns john as an answer.

Note: In Ontop, existential reasoning needs to be switched on explicitly, since it affects performance.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (55/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting and canonical model

Canonical model

Every consistent DL-Lite / OWL 2 QL KB K = ⟨O,A⟩ has a canonical model IK , which gives the
right answers to all CQs, i.e., cert(q,K) = ans(q,IK)

• The core part can be handled by saturating the mapping.
• The anonymous part can be handled by tree-witness rewriting.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (56/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting and canonical model

Canonical model

Every consistent DL-Lite / OWL 2 QL KB K = ⟨O,A⟩ has a canonical model IK , which gives the
right answers to all CQs, i.e., cert(q,K) = ans(q,IK)

Core
individuals
from A

• The core part can be handled by saturating the mapping.
• The anonymous part can be handled by tree-witness rewriting.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (56/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting and canonical model

Canonical model

Every consistent DL-Lite / OWL 2 QL KB K = ⟨O,A⟩ has a canonical model IK , which gives the
right answers to all CQs, i.e., cert(q,K) = ans(q,IK)

Anonymous part
trees rooted at individuals,
using unnamed objects

• The core part can be handled by saturating the mapping.
• The anonymous part can be handled by tree-witness rewriting.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (56/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting and canonical model

Canonical model

Every consistent DL-Lite / OWL 2 QL KB K = ⟨O,A⟩ has a canonical model IK , which gives the
right answers to all CQs, i.e., cert(q,K) = ans(q,IK)

• The core part can be handled by saturating the mapping.
• The anonymous part can be handled by tree-witness rewriting.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (56/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting and canonical model

Canonical model

Every consistent DL-Lite / OWL 2 QL KB K = ⟨O,A⟩ has a canonical model IK , which gives the
right answers to all CQs, i.e., cert(q,K) = ans(q,IK)

x
R

y
⇡(x)

⇡(y)

• The core part can be handled by saturating the mapping.
• The anonymous part can be handled by tree-witness rewriting.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (56/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

The PerfectRef algorithm for query rewriting

We do not describe here the tree-witness rewriting algorithm, which is rather involved.

Instead, we describe PerfectRef , a simple query rewriting algorithm that maintains a set of queries
and applies over them two types of transformations:
• rewriting steps that involve inclusion assertions of the ontology, and
• unification of query atoms.

These transformations are applied repeatedly until saturation, i.e., until the set of queries does not
change anymore.

Given as input a (core) SPARQL query q, PerfectRef computes its perfect rewriting, which is still a
SPARQL query (involving UNION).

Note: Disjointness assertions play a role in ontology satisfiability, but can be ignored during query
rewriting. (This is called separability.)

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (57/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting step: Basic idea
Intuition: an inclusion assertion corresponds to a logic programming rule.

Basic rewriting step:

When an atom in the query unifies with the head of the rule, generate a new query by substituting the
atom with the body of the rule.

We say that the inclusion assertion applies to the atom.

Example

The inclusion assertion Professor ⊑ Teacher
corresponds to the logic programming rule Teacher(z) ← Professor(z).

Consider the query q(x) ← Teacher(x).

By applying the inclusion assertion to the atom Teacher(x), we generate:
q(x) ← Professor(x).

This query is added to the input query, and contributes to the perfect rewriting.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (58/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting (cont’d)

Example

Consider the query q(x) ← teaches(x, y),Course(y)

and the inclusion assertion ∃teaches− ⊑ Course
as a logic programming rule: Course(z2) ← teaches(z1, z2).

The inclusion applies to Course(y), and we add to the rewriting the query

q(x) ← teaches(x, y), teaches(z1, y).

Example

Consider now the query q(x) ← teaches(x, y)

and the inclusion assertion Professor ⊑ ∃teaches
as a logic programming rule: teaches(z, f (z)) ← Professor(z).

The inclusion applies to teaches(x, y), and we add to the rewriting the query

q(x) ← Professor(x).
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (59/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting – Constants

Example

Conversely, for the query q(x) ← teaches(x, ”databases”)

and the same inclusion assertion as before Professor ⊑ ∃teaches
as a logic programming rule: teaches(z, f (z)) ← Professor(z)

teaches(x, ”databases”) does not unify with teaches(z, f (z)), since the skolem term f (z) in the head
of the rule does not unify with the constant ”databases”.
Remember: We adopt the unique name assumption.

We say that the inclusion does not apply to the atom teaches(x, ”databases”).

Example

The same holds for the following query, where y is distinguished, since unifying f (z) with y would
correspond to returning a skolem term as answer to the query:

q(x, y) ← teaches(x, y).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (60/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting – Join variables

An analogous behavior to the one with constants and with distinguished variables holds when the
atom contains join variables that would have to be unified with skolem terms.

Example

Consider the query q(x) ← teaches(x, y),Course(y)

and the inclusion assertion Professor ⊑ ∃teaches
as a logic programming rule: teaches(z, f (z)) ← Professor(z).

The inclusion assertion above does not apply to the atom teaches(x, y).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (61/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting – Reduce step

Example

Consider now the query q(x) ← teaches(x, y), teaches(z, y)

and the inclusion assertion Professor ⊑ ∃teaches
as a logic rule: teaches(z, f (z)) ← Professor(z).

This inclusion assertion does not apply to teaches(x, y) or teaches(z, y), since y is in join, and we
would again introduce the skolem term in the rewritten query.

Example

However, we can transform the above query by unifying the atoms teaches(x, y) and teaches(z, y).
This rewriting step is called reduce, and produces the query

q(x) ← teaches(x, y).

Now, we can apply the inclusion above, and add to the rewriting the query

q(x) ← Professor(x).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (62/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting – Summary
To compute the perfect rewriting of a query q with respect to an ontology O, start from q, iteratively get
a CQ q′ to be processed, and do one of the following:

• Apply to some atom of q′ an inclusion assertion in O as follows:

C1 ⊑ C2 . . . ,C2(x), . . . ; . . . ,C1(x), . . .
∃P ⊑ C . . . ,C(x), . . . ; . . . ,P(x,), . . .
∃P− ⊑ C . . . ,C(x), . . . ; . . . ,P(, x), . . .

C ⊑ ∃P . . . ,P(x,), . . . ; . . . ,C(x), . . .
C ⊑ ∃P− . . . ,P(, x), . . . ; . . . ,C(x), . . .
∃P1 ⊑ ∃P2 . . . ,P2(x,), . . . ; . . . ,P1(x,), . . .

P1 ⊑ P2 . . . ,P2(x, y), . . . ; . . . ,P1(x, y), . . .
P1 ⊑ P−2 . . . ,P2(x, y), . . . ; . . . ,P1(y, x), . . .
· · ·(’ ’ denotes a variable that appears only once)

• Choose two atoms of q′ that unify, and apply the unifier to q′.
After each rewriting/unification step, the obtained query is added to the queries still to be processed.
Note: Unifying atoms can make rules applicable that were not so before, and is required for
completeness of the method [C., De Giacomo, et al. 2007].
The UCQ resulting from this process is the perfect rewriting qr of q w.r.t. the ontology O.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (63/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query rewriting algorithm

Algorithm PerfectRef(Q,OP)
Input: union of conjunctive queries Q, set OP of DL-Lite / OWL 2 QL positive inclusion assertions
Output: union of conjunctive queries PR
PR := Q;
repeat

PR′ := PR;
for each q ∈ PR′ do

for each g in q do
for each inclusion assertion I in OP do

if I is applicable to g then PR := PR ∪ {ApplyPI(q, g, I) };
for each g1, g2 in q do

if g1 and g2 unify then PR := PR ∪ {τ(Reduce(q, g1, g2))};
until PR′ = PR;
return PR

Observations:
• Termination follows from having only finitely many different rewritings.
• Disjointness assertions and functionalities do not play any role in the rewriting of the query.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (64/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query answering in DL-Lite – Example
Ontology: Corresponding rules:

Professor ⊑ Teacher
Teacher ⊑ ∃teaches

∃teaches− ⊑ Course

Teacher(z)← Professor(z)
teaches(z, f (z))← Teacher(z)

Course(z)← teaches(w, z)

Query: q(x)← teaches(x, y),Course(y)

Perfect rewriting: q(x)← teaches(x, y),Course(y)
q(x)← teaches(x, y), teaches(, y)
q(x)← teaches(x,)
q(x)← Teacher(x)
q(x)← Professor(x)

ABox: teaches(jim, databases) Professor(jim)
teaches(julia, security) Teacher(nicole)

Evaluating the perfect rewriting over the ABox (seen as a DB) produces as answer
{jim, julia, nicole}.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (65/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query answering in DL-Lite – An interesting example

TBox: Person ⊑ ∃hasFather
∃hasFather− ⊑ Person

ABox: Person(john)

Query: q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2, y3)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(y2,)
⇊ Apply Person ⊑ ∃hasFather to the atom hasFather(y2,)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2),Person(y2)
⇊ Apply ∃hasFather− ⊑ Person to the atom Person(y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2), hasFather(, y2)
⇊ Unify atoms hasFather(y1, y2) and hasFather(, y2)

q(x)← Person(x), hasFather(x, y1), hasFather(y1, y2)
⇊
· · ·

q(x)← Person(x), hasFather(x,)
⇊ Apply Person ⊑ ∃hasFather to the atom hasFather(x,)

q(x)← Person(x)

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (66/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Exponential blowup in the rewriting

Even with a flat hierarchy of classes in which a single inclusion assertion can be applied to each atom
of a query q, the rewriting may contain an number of CQs that is exponential in the length of q.

Consider a query: q(x) ← C1
1(x), C1

2(x), . . . , C1
n(x)

and the ontology: O = { C2
1 ⊑ C1

1, C2
2 ⊑ C1

2, . . . , C2
n ⊑ C1

n }

Each atom C1
i (x) in q can either stay as is, or we can apply to it the inclusion assertion C2

i ⊑ C1
i , and

generate a new CQ in which C1
i (x) is replaced by C2

i (x).

Hence, in the rewriting we have one CQ

q(x) ← Cj1
1 (x), Cj2

2 (x), . . . , Cjn
n (x)

for each possible combination of ji ∈ {1, 2}, for i ∈ {1, . . . , n}.

Hence, the rewriting of q with respect to O contains 2n CQs.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (67/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)

3 Optimizing Query Answering in VKGs
Query rewriting wrt an OWL 2 QL ontology
Query unfolding wrt a mapping
Mapping saturation
Optimization of query reformulation

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (67/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query unfolding

We consider now Step 2 of reformulation, i.e., the unfolding w.r.t. the mappingM.

In principle, we have two approaches to exploit the mapping:
• bottom-up approach: simpler, but typically less efficient
• top-down approach: more sophisticated, but also more efficient

Both approaches require to first split the set of atoms in the target queries of the mapping assertions
into the constituent atoms.

Note: In the following, to make notation more compact, we represent an IRI-template of the form

:xxx/{v1}/{v2}/· · · /{vn}

more compactly as
xxx(v1, . . . , vn).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (68/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Splitting of mappings

A mapping assertion Φ⇝ Ψ, where the target query Ψ is constituted by the atoms X1,. . . ,Xk, can be
split into k mapping assertions:

Φ⇝ X1 · · · Φ⇝ Xk

This is possible, since Ψ does not contain non-distinguished variables.

Example

m1: SELECT pcode, acode, aname FROM ACTOR ⇝ Play(pl(pcode)),
Actor(act(acode)),
name(act(acode), aname),
actsIn(act(acode), pl(pcode))

is split into
m1

1: SELECT pcode, acode, aname FROM ACTOR ⇝ Play(pl(pcode))
m2

1: SELECT pcode, acode, aname FROM ACTOR ⇝ Actor(act(acode))
m3

1: SELECT pcode, acode, aname FROM ACTOR ⇝ name(act(acode), aname)
m4

1: SELECT pcode, acode, aname FROM ACTOR ⇝ actsIn(act(acode), pl(pcode))

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (69/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Bottom-up approach to deal with mappings: Materialization

Consists in a straightforward application of the mappings to the data:

1 Propagate the data from D throughM, materializing the RDF graphV =M(D) (the constants
in such an RDF graph are values and object terms obtained from the database values).

2 Apply toV and to the ontology O, the query answering algorithm (based on query rewriting)
developed for DL-Lite / OWL 2 QL.

This approach has several drawbacks:
• The technique is no more AC0 in the size of the data, since the RDF graphV to materialize is in

general polynomial in the size of the data.
• V may be very large, and thus it may be infeasible to actually materialize it.
• Freshness ofV with respect to the underlying data source(s) may be an issue, and one would

need to propagate source updates (cf. Data Warehousing).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (70/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Top-down approach to deal with mappings: Unfolding

The top-down approach is realized by computing from the (rewritten) query qr a new query qunf, by
unfolding qr using (the split version of) the mappingsM.

Consider the mapping assertions Φi ⇝ Ψi.

• Essentially, each atom in qr that unifies with an atom in some Ψi is substituted with the
corresponding query Φi over the database.

• The unfolded query qunf is such that for each database D we have that:

qunf(D) = Evalcwa(qr,M(D)).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (71/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Unfolding

To unfold a query qr with respect to a setM of mapping assertions:

1 For each non-split mapping assertion Φi (⃗x)⇝ Ψi (⃗t, y⃗):
1 Introduce a view symbol Auxi of arity equal to that of Φi.
2 Add a view definition Auxi (⃗x)← Φi (⃗x).

2 For each split version Φi (⃗x)⇝ Xj
i (⃗t, y⃗) of a mapping assertion, introduce a clause

Xj
i (⃗t, y⃗)← Auxi (⃗x).

3 Obtain from qr in all possible ways queries qaux defined over the view symbols Auxi as follows:
1 Find a most general unifier ϑ that unifies each atom X(⃗z) in the body of qr with the head of a clause

X(⃗t, y⃗)← Auxi (⃗x).
2 Substitute each atom X(⃗z) with ϑ(Auxi (⃗x)), i.e., with the body the unified clause to which the unifier ϑ is

applied.

4 The unfolded query qunf is the union of all queries qaux, together with the view definitions for the
predicates Auxi appearing in qaux.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (72/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Unfolding – Example

Actor
name: String

SeriesActor MovieActor

Play
title: String

Movie
rating: Float

actsIn

1..*

playsIn

m1: SELECT pcode, acode, aname
FROM ACTOR

⇝ Play(pl(pcode)),
Actor(act(acode)),
name(act(acode), aname),
actsIn(act(acode), pl(pcode))

m2: SELECT mcode, acode, mtitle
FROM MOVIE M, ACTOR A

WHERE M.mcode = A.pcode

AND M.type = "m"

⇝ Movie(pl(mcode)),
playsIn(act(acode),

pl(mcode)),
title(pl(mcode), mtitle)

We define a view Auxi for the source query of each mapping mi.

For each (split) mapping assertion, we introduce a clause:

Play(pl(pcode)) ← Aux1(pcode, ,)
Actor(act(acode)) ← Aux1(, acode,)

name(act(acode), aname) ← Aux1(, acode, aname)
actsIn(act(acode),pl(pcode)) ← Aux1(pcode, acode,)

Movie(pl(mcode)) ← Aux2(mcode, ,)
playsIn(act(acode),pl(mcode)) ← Aux2(mcode, acode,)

title(pl(mcode),mtitle) ← Aux2(mcode, ,mtitle)
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (73/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Unfolding – Example (cont’d)

Query over the ontology: Actors with their name who act in a movie whose title is "The Matrix":
q(a, n)← Actor(a), name(a, n), actsIn(a, p),Movie(p), title(p, "The Matrix")

Actor(act(acode)) ← Aux1(, acode,)
name(act(acode), aname) ← Aux1(, acode, aname)

actsIn(act(acode),pl(pcode)) ← Aux1(pcode, acode,)
Movie(pl(mcode)) ← Aux2(mcode, ,)

title(pl(mcode),mtitle) ← Aux2(mcode, ,mtitle)
A unifier ϑ between the atoms in q and the clause heads is:
ϑ(a) = act(acode)
ϑ(p) = pl(pcode)

ϑ(n) = aname
ϑ(mcode) = pcode ϑ(mtitle) = "The Matrix"

After applying ϑ to q, we obtain:
q(act(acode), aname)← Actor(act(acode)), name(act(acode), aname), actsIn(act(acode),pl(pcode)),

Movie(pl(pcode)), title(pl(pcode), "The Matrix")

Substituting the atoms with the bodies of the clauses (after having applied the unifier), we obtain:
q(act(acode), aname)← Aux1(, acode,), Aux1(, acode, aname), Aux1(pcode, acode,),

Aux2(pcode, ,), Aux2(pcode, , "The Matrix")

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (74/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Exponential blowup in the unfolding
When there are multiple mapping assertions for each atom, the unfolded query may be exponential in
the original one.

Consider a query: q(y)← C1(y),C2(y), . . . ,Cn(y)

and the mappings: m1
i : Φ1

i (x)⇝ Ci(iri(x))
m2

i : Φ2
i (x)⇝ Ci(iri(x))

(for i ∈ {1, . . . , n})

We add the view definitions: Auxj
i(x)← Φj

i(x)
and introduce the clauses: Ci(iri(x))← Auxj

i(x) (for i ∈ {1, . . . , n}, j ∈ {1, 2}).

There is a single unifier, namely ϑ(y) = iri(x), but each atom Ci(y) in the query unifies with the head of
two clauses.

Hence, we obtain one unfolded query

q(iri(x))← Auxj1
1 (x),Auxj2

2 (x), . . . ,Auxjn
n (x)

for each possible combination of ji ∈ {1, 2}, for i ∈ {1, . . . , n}.
Hence, we obtain 2n unfolded queries.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (75/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Implementation of top-down approach to query answering
To implement the top-down approach, we need to generate an SQL query.

We can follow different strategies:
1 Substitute each view predicate in the unfolded queries with the corresponding SQL query over

the source:
+ joins are performed on the DB attributes, hence can be done efficiently, e.g., by exploiting indexes;
+ does not generate doubly nested queries;
– the number of unfolded queries may be exponential.

2 Construct for each atom in the original query a new view. This view takes the union of all SQL
queries corresponding to the view predicates, and constructs also the IRIs based on the IRI
templates:

+ avoids exponential blow-up of the resulting query, since the union (of the queries coming from multiple
mappings) is done before the joins;

– joins are performed on IRIs, i.e., on terms built using string concatenation, hence are highly inefficient;
– generates doubly nested queries, which per se the database has difficulty in optimizing.

Which method is better, depends on various parameters, and there is no definitive answer.
In general, one needs a mixed approach that applies different strategies to different parts of the query.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (76/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)

3 Optimizing Query Answering in VKGs
Query rewriting wrt an OWL 2 QL ontology
Query unfolding wrt a mapping
Mapping saturation
Optimization of query reformulation

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (76/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Contributions of rewriting and unfolding

• We are interested in computing certain answers to SPARQL queries over a VKG instance ⟨P,D⟩,
with P = ⟨O,M,S⟩.

• In practice, by computing the rewriting qr of q w.r.t. O and its unfolding w.r.t.M, the resulting
query qunf might become very large, and costly to execute over D.

Let us consider the contributions of rewriting and unfolding to the query answers:
• In principle, evaluating the unfolding qunf (of qr w.r.t.M) over D, gives the same result as

evaluating qr over the RDF graphV =M(D) extracted through the mappingM from the data D.
• Instead, the impact of the rewriting on the query answers consists of two components:

1 the rewriting w.r.t. class and property hierarchies, i.e., C1 ⊑ C2, P1 ⊑ P2;
2 the rewriting taking into account existential reasoning, i.e., C ⊑ ∃R, C1 ⊑ ∃R.C2.

Note: Component 1 corresponds to computing the saturationVsat ofV w.r.t. class and property
hierarchies, while component 2 can be handled only through rewriting.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (77/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Tree-witness rewriting and saturated mapping

We want to avoid materializingV andVsat, but also want to avoid computing the query rewriting w.r.t.
class and property hierarchies.

Therefore we proceed as follows:

1 We rewrite q only w.r.t. the inclusion assertions that cause existential reasoning (i.e., C ⊑ ∃R,
C1 ⊑ ∃R.C2).
; tree-witness rewriting qtw [Kikot et al. 2012]

2 We use instead class and property hierarchies (i.e., C1 ⊑ C2, P1 ⊑ P2) to enrich the mappingM.
; saturated mappingMsat [Rodriguez-Muro et al. 2013; Kontchakov, Rezk, et al. 2014]

3 We unfold the tree-witness rewriting qtw w.r.t. the saturated mappingMsat.

It is possible to show that the resulting query is equivalent to the perfect rewriting qr (as obtained,
e.g., through ordinary rewriting w.r.t. O and unfolding w.r.t.M).

For more details, we refer also to [Kontchakov & Zakharyaschev 2014].

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (78/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Saturated mapping

Intuitively, the saturated mappingMsat is obtained as the composition ofM and the ontology O.

For each mapping assertion and each TBox assertion we add a mapping assertion
inM in O toMsat

Φ(x)⇝ C1(iri(x)) C1 ⊑ C2 Φ(x)⇝ C2(iri(x))

Φ(x, y)⇝ P(iri1(x), iri2(y)) ∃P ⊑ C1 Φ(x, y)⇝ C1(iri1(x))

Φ(x, y)⇝ P(iri1(x), iri2(y)) ∃P− ⊑ C2 Φ(x, y)⇝ C2(iri2(y))

Φ(x, y)⇝ P1(iri1(x), iri2(y)) P1 ⊑ P2 Φ(x, y)⇝ P2(iri1(x), iri2(y))

Due to saturation,Msat will contain at most |O| · |M| many mappings.

Note: The saturated mapping has also been called T-mapping in the literature.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (79/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Saturated mapping – Exercise

Ontology O

Student ⊑ Person
PostDoc ⊑ Faculty

Professor ⊑ Faculty
∃teaches ⊑ Faculty

Faculty ⊑ Person

User-defined mapping assertionsM

student(scode, fn, ln) ⇝ Student(iri1(scode)) (1)
academic(acode, fn, ln, pos), pos = 9 ⇝ PostDoc(iri2(acode)) (2)
academic(acode, fn, ln, pos), pos = 2 ⇝ Professor(iri2(acode)) (3)
teaching(course, acode) ⇝ teaches(iri2(acode), iri3(course)) (4)
academic(acode, fn, ln, pos) ⇝ Faculty(iri2(acode)) (5)

By saturating the mapping, we obtainMsat, containing additional mapping assertions for the classes Faculty and Person.

student(scode, fn, ln) ⇝ Person(iri1(scode)) (6)
academic(acode, fn, ln, pos), pos = 9 ⇝ Faculty(iri2(acode)) (7)
academic(acode, fn, ln, pos), pos = 9 ⇝ Person(iri2(acode)) (8)
academic(acode, fn, ln, pos), pos = 2 ⇝ Faculty(iri2(acode)) (9)
academic(acode, fn, ln, pos), pos = 2 ⇝ Person(iri2(acode)) (10)
academic(acode, fn, ln, pos) ⇝ Person(iri2(acode)) (11)
teaching(course, acode) ⇝ Faculty(iri2(acode)) (12)
teaching(course, acode) ⇝ Person(iri2(acode)) (13)

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (80/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Properties of saturated mappings

H-complete RDF graph

An RDF graph G is H-complete w.r.t. an ontology O, if, for every RDF triple (s, p, o), we have:

⟨O,G⟩ |= (s, p, o) iff (s, p, o) ∈ G

The saturation Gsat of G w.r.t. O is the smallest RDF graph that contains G and is H-complete w.r.t. O.

Intuitively, Gsat is obtained from G by applying the class and property inclusions of O, but without
introducing new nodes.

Relationship between the saturated mappingMsat and the saturation ofM(D)
• We have thatMsat(D) = (M(D))sat (hence, it is an H-complete RDF graph).
• Msat does not depend on the SPARQL query q, hence it can be pre-computed.
• It can be optimized (by exploiting query containment).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (81/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping optimization – Exercise
Saturated mapping assertionsMsat

· · ·

academic(acode, fn, ln, pos) ⇝ Faculty(iri2(acode)) (5)
student(scode, fn, ln) ⇝ Person(iri1(scode)) (6)
academic(acode, fn, ln, pos), pos = 9 ⇝ Faculty(iri2(acode)) (7)
academic(acode, fn, ln, pos), pos = 9 ⇝ Person(iri2(acode)) (8)
academic(acode, fn, ln, pos), pos = 2 ⇝ Faculty(iri2(acode)) (9)
academic(acode, fn, ln, pos), pos = 2 ⇝ Person(iri2(acode)) (10)
academic(acode, fn, ln, pos) ⇝ Person(iri2(acode)) (11)
teaching(course, acode) ⇝ Faculty(iri2(acode)) (12)
teaching(course, acode) ⇝ Person(iri2(acode)) (13)

Consider also a foreign key over the database relations

FK: ∃y1.teaching(y1, x)→ ∃y2y3y4.academic(x, y2, y3, y4)

We can optimize the mapping using query containment and the FK. This removes mapping assertions 7, 8, 9, 10, 12, and 13.

· · ·

academic(acode, fn, ln, pos) ⇝ Faculty(iri2(acode)) (5)
student(scode, fn, ln) ⇝ Person(iri1(scode)) (6)
academic(acode, fn, ln, pos) ⇝ Person(iri2(acode)) (11)

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (82/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query reformulation as implemented by the Ontop system

q
(SPARQL)

O

Tree-witness
rewriting

Unfolding based on
saturated mappings

Msat

Optimization

Primary and
foreign keys

qopt

(SQL)

qtw

(SPARQL)

qunf

(SQL)

Step Input Output

1. Tree-witness rewriting q and O qtw

2. Unfolding qtw andMsat qunf

3. Optimization qunf, primary and foreign keys qopt

Let us now consider the optimization step.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (83/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)

3 Optimizing Query Answering in VKGs
Query rewriting wrt an OWL 2 QL ontology
Query unfolding wrt a mapping
Mapping saturation
Optimization of query reformulation

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (83/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

SQL query optimization

Objective : produce SQL queries that are . . .
• similar to manually written ones
• adapted to existing query planners

Structural optimization
• From join-of-unions to union-of-joins
• IRI decomposition to improve

performance of joins

Semantic optimization
• Redundant join elimination
• Redundant union elimination
• Using functional constraints

Integrity constraints
• Primary and foreign keys, uniqueness constraints
• Sometimes implicit
• Vital for query reformulation!

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (84/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Reformulation example – 1. Unfolding

Saturated mapping

academic(acode, fn, ln, pos), pos ∈ [1..8]

⇝ Teacher(iri2(acode))

teaching(course, acode) ⇝ Teacher(iri2(acode))

student(scode, fn, ln) ⇝ firstName(iri1(scode), fn)

academic(acode, fn, ln, pos) ⇝ firstName(iri2(acode), fn)

student(scode, fn, ln) ⇝ lastName(iri1(scode), ln)

academic(acode, fn, ln, pos) ⇝ lastName(iri2(acode), ln)

Query (we assume that the ontology is empty, hence qr = q)

q(x, y, z) ← Teacher(x), firstName(x, y), lastName(x, z)

We apply query unfolding, and then normalization to
make the join conditions explicit.

qnorm(x, y, z) ← q1unf(x), q2unf(x1, y),
q3unf(x2, z), x = x1, x = x2

q1unf(iri2(acode)) ← academic(acode, fn, ln, pos),
pos ∈ [1..8]

q1unf(iri2(acode)) ← teaching(course, acode)

q2unf(iri1(scode), fn) ← student(scode, fn, ln)

q2unf(iri2(acode), fn) ← academic(acode, fn, ln, pos)

q3unf(iri1(scode), ln) ← student(scode, fn, ln)

q3unf(iri2(acode), ln) ← academic(acode, fn, ln, pos)

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (85/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Reformulation example – 2. Structural optimization
Unfolded normalized query

qnorm(x, y, z) ← q1unf(x), q2unf(x1, y),
q3unf(x2, z),
x = x1, x = x2

q1unf(iri2(a)) ← academic(a, f , l, p),
p ∈ [1..8]

q1unf(iri2(a)) ← teaching(c, a)

q2unf(iri1(s), f) ← student(s, f , l)

q2unf(iri2(a), f) ← academic(a, f , l, p)

q3unf(iri1(s), l) ← student(s, f , l)

q3unf(iri2(a), l) ← academic(a, f , l, p)

• While flattening, we can avoid to generate those
queries that contain in their body an equality
between two terms with incompatible IRI
templates.

• This might avoid a potential exponential blowup.

Flattening (URI template lifting) – Part 1/2

qlift(iri2(a), y, z) ← academic(a, f1, l1, p1),
student(s, f2, l2),
student(s1, f3, l3),
iri2(a) = iri1(s),
iri2(a) = iri1(s1),
p1 ∈ [1..8]

qlift(iri2(a), y, z) ← academic(a, f1, l1, p1),
student(s, f2, l2),
academic(a2, f3, z, p3),
iri2(a) = iri1(s),
iri2(a) = iri2(a2),
p1 ∈ [1..8]

(One sub-query not shown)

qlift(iri2(a), y, z) ← academic(a, f1, l1, p1),
academic(a1, y, l2, p2),
academic(a2, f3, z, p3),
iri2(a) = iri2(a1),
iri2(a) = iri2(a2),
p1 ∈ [1..8]

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (86/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Reformulation example – 2. Structural optimization
Unfolded normalized query

qnorm(x, y, z) ← q1unf(x), q2unf(x1, y),
q3unf(x2, z),
x = x1, x = x2

q1unf(iri2(a)) ← academic(a, f , l, p),
p ∈ [1..8]

q1unf(iri2(a)) ← teaching(c, a)

q2unf(iri1(s), f) ← student(s, f , l)

q2unf(iri2(a), f) ← academic(a, f , l, p)

q3unf(iri1(s), l) ← student(s, f , l)

q3unf(iri2(a), l) ← academic(a, f , l, p)

• While flattening, we can avoid to generate those
queries that contain in their body an equality
between two terms with incompatible IRI
templates.

• This might avoid a potential exponential blowup.

Flattening (URI template lifting) – Part 2/2

qlift(iri2(a), y, z) ← teaching(c, a),
student(s, f2, l2),
student(s1, f3, l3),
iri2(a) = iri1(s),
iri2(a) = iri1(s1)

qlift(iri2(a), y, z) ← teaching(c, a),
student(s, f2, l2),
academic(a2, f3, z, p3),
iri2(a) = iri1(s),
iri2(a) = iri2(a2)

(One sub-query not shown)

qlift(iri2(a), y, z) ← teaching(c, a),
academic(a1, y, l2, p2),
academic(a2, f3, z, p3),
iri2(a) = iri2(a1),
iri2(a) = iri2(a2)

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (86/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Reformulation example – 3. Semantic optimization

We are left with just two queries, which we can simplify by eliminating equalities

qstruct(iri2(a), y, z) ← academic(a, f1, l1, p1), p1 ∈ [1..8],
academic(a, y, l2, p2),
academic(a, f3, z, p3)

qstruct(iri2(a), y, z) ← teaching(c, a),
academic(a, y, l2, p2),
academic(a, f3, z, p3)

We can then exploit database constraints (e.g., primary keys) for semantic optimization of the query.

Self-join elimination (semantic optimization)

PK: academic(acode, f , l, p) ∧ academic(acode, f ′, l′, p′) → (f = f ′) ∧ (l = l′) ∧ (p = p′)

qopt(iri2(a), y, z) ← academic(a, y, z, p1), p1 ∈ [1..8]

qopt(iri2(a), y, z) ← teaching(c, a), academic(a, y, z, p2)

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (87/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)

3 Optimizing Query Answering in VKGs

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (87/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Designing VKG mappings
The form of the mapping in VKGs is critical in ensuring that:
• the resulting VKG specification captures correctly the domain semantics, and
• queries posed over a VKG instance can be answered efficiently.

In designing the mapping assertions, we can rely on some simple observations:
• For each atom in the target part, the source query should be the simplest SQL query that

retrieves the data that is necessary to populate that atom.

• In particular, we should avoid unnecessary joins in the source query.

• We should combine two (or more) atoms in a single mapping assertion only if they require the
same source query.

• We need to pay attention to the form of the IRI-templates, to ensure that the “same” ontology
object retrieved through multiple mappings is constructed with the same IRI-template.

However, these observations in general are not sufficient to ensure a good mapping design.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (88/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Patterns in data sources

• In order to simplify the task of mapping design, it is convenient to identify whether the data
source satisfies certain common patterns.

• Each such data pattern can be captured in a sort of “standard” way through a specific form of
mapping assertions, combined with some specific form of ontology axiom.

• The presence of a pattern in a data source, and hence the applicability of the corresponding
standard encoding into mapping (and ontology axioms), is signaled by the presence of some
(combination of) constraints that hold over the relational tables.

• Notice that such constraints might hold:
• either because they are explicitly declared in the database, and hence enforced by the DBMS,
• or because they are implied by the semantics of the domain, even though they might not be declared

explicitly in the database.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (89/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Looking at database design principles

In relational database design, well-established conceptual modeling principles and
methodologies are usually employed.
• The resulting schema should suitably reflects the application domain at hand.

• This design phase relies on semantically-rich representations such as ER diagrams.

• However, these representations, typically:
• get lost during deployment, since they are not conveyed together with the database itself, or
• quickly get outdated due to continuous adjustments triggered by changing requirements.

Key Observation

While the relational model may be semantically-poor with respect to ontological models, the original
semantically-rich design of the application domain leaves recognizable footprints that can be
converted into ontological mapping patterns.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (90/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

VKG mapping patterns

Therefore, in designing VKG mapping patterns, we draw an explicit and precise connection with
conceptual modeling practices found in DB design, while exploiting all of:

• the relational schema with its constraints

• the conceptual schema at the basis of the relational schema

• extensional data stored in the DB (when available)

• the domain knowledge that is encoded in ontology axioms

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (91/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Catalog of mapping patterns

To come up with a catalog of mapping patterns, we can rely on well-established methodologies and
patterns studied in:
• data management – e.g., W3C Direct Mapping Specification [Arenas et al. 2012] and extensions
• data analysis – e.g., algorithms for discovering dependencies, and
• conceptual modeling

The specification of each pattern includes:
• the three components of a VKG specification: DB schema, ontology, mapping between the two;
• the conceptual schema of the domain of interest;
• underlying data, when available.

Note that the patterns do not fix what is given as input and what is produced as output, but simply
describe how the different elements relate to each other.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (92/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Two major groups of mapping patterns

Schema-driven patterns

Are shaped by the structure of the DB schema and its explicit constraints.

Data-driven patterns
• Consider also constraints emerging from specific configurations of the data in the DB.
• For each schema-driven pattern, we identify a data-driven version:

The constraints over the schema are not explicitly specified, but hold in the data.
• We provide also data-driven patterns that do not have a schema-driven counterpart.

• We use also additional semantic information from the ontology ; Pattern modifiers
• Some patterns come with views over the DB-schema:

• Views reveal structures over the DB-schema, when the pattern is applied.
• Views can be used to identify the applicability of further patterns.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (93/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Constraints on the data

When defining the mapping patterns, we consider the traditional types of DB constraints:

• Primary key constraint: T(K,A)

• Key constraint: keyT (K)

• Foreign key constraint: T1[A] ⊆ T2[K], where K is a (typically primary) key of relation T2.
We use the notation:

T1 (A,B) T2
(
K,A′

)

Note: We use normal font (e.g., A) for single attributes, and boldface for sets of attributes (e.g., A).

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (94/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Types of mapping patterns
In the following, we discuss the following mapping patterns:
• Entity (MpE)
• Relationship (MpR)
• Relationship with Identifier Alignment (MpRa)
• Relationship with Merging (MpRm)
• 1-1 Relationship with Merging (MpR11m)

• Reified Relationship (MpRR)
• Hierarchy (MpH)
• Hierarchy with Identifier Alignment (MpHa)
• Clustering Entity to Class / Data Property /

Object Property (MpCE2X)

We present each mapping pattern by specifying the following four components:
1 The constraints over the relational schema/data that make the patterns applicable.
2 A possible conceptual schema (specified as an Entity-Relationship diagram) that corresponds to

such constraints. The elements that are directly affected by the pattern and that give rise to the
mapping assertions are outlined in red.

3 The source and target part of the resulting mapping assertion(s).
4 The ontology axioms that should hold.

Note: In the following, we make use of IRI-templates of the form “:E/{K}”, where we assume
that “:E/” is a prefix that is specific for the instances of a class CE.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (95/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Entity (MpE)

Relational schema and constraints:
TE(K,A) E

K A

Mapping assertion:
s : TE

t : :E/{K} rdf:type CE .
{ :E/{K} dA {A} . }A∈K∪A

Ontology axioms:
{ ∃dA ⊑ CE }A∈K∪A

For the application of the mapping pattern, we observe the following:
• This fundamental pattern considers a single table TE with primary key K and other relevant

attributes A.
• The pattern captures how TE is mapped into a corresponding class CE.
• The primary key K of TE is used to construct the objects that are instances of CE, using a

template :E/{K} specific for CE.
• Each relevant attribute of TE is mapped to a data property of CE.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (96/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Entity (MpE) – Example

Consider a TClient table containing ssns of clients, together with name, dateOfBirth, and hobbies as
additional attributes.
TClient(ssn,name,dateOfBirth ,hobbies)

Mapping: TClient is mapped to a Client class using the attributes ssn to construct its objects. In
addition, the ssn, name, and dateOfBirth are used to populate in the object position the three data
properties ssn, name, and dob, respectively. The attribute hobbies is ignored.

mappingId MClient
source SELECT ssn, name, dateOfBirth FROM TClient

target :C/{ssn} rdf:type :Client ;

:ssn {ssn} ;

:name {name} ;

:dob {dateOfBirth} .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (97/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Relationship (MpR)

Relational schema and constraints:
TE(KE,AE) TF(KF,AF)

TR(KRE,KRF)
E

KE AE

F

KF AF

R

Mapping assertion:
s : TR

t : :E/{KRE} pR :F/{KRF} .

Ontology axioms:
∃pR ⊑ CE

∃p−R ⊑ CF

For the application of the mapping pattern, we observe the following:
• This pattern considers three tables TR, TE, and TF.
• The primary key of TR is partitioned into two parts KRE and KRF that are foreign keys to TE and

TF, respectively.
• TR has no additional (relevant) attributes.
• The pattern captures how TR is mapped to an object property pR, using the two parts KRE and

KRF of the primary key to construct respectively the subject and the object of the triples in pR.
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (98/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Relationship (MpR) – Example

An additional TAddress table in the client registry stores the addresses at which each client can be
reached, and such table has a foreign key to a table TLocation storing locations using attributes city
and street.
TClient(ssn,name,dateOfBirth ,hobbies)

TLocation(city,street)

TAddress(client,locCity,locStreet)

FK: TAddress[client] -> Tclient[ssn]

FK: TAddress[locCity,locStreet] -> TLocation[city,street]

Mapping: The TAddress table is mapped to an address object property, for which the ontology
asserts that the domain is the class Person and the range an additional class Location,
corresponding to the TLocation table.

mappingId MAddress
source SELECT client, locCity, locStreet FROM TAddress

target :C/{client} :address :L/{locCity}/{locStreet} .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (99/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Relationship with Identifier Alignment (MpRa)

Relational schema and constraints:
TE(KE,AE) TF(KF,UF,AF)

TR(KRE,URF) keyRF
(UF) E

KE AE

F

KF UF

AF

R

Mapping assertion:
s : TR 1URF=UF TF

t : :E/{KRE} pR :F/{KF} .

Ontology axioms:
∃pR ⊑ CE

∃p−R ⊑ CF

For the application of the mapping pattern, we observe the following:
• Such pattern is a variation of pattern MpR, in which the foreign key in TR does not point to the

primary key KF of TF, but to an additional key UF.
• Since the instances of class CF corresponding to TF are constructed using the primary key KF of

TF (cf. pattern MpE), also the pairs that populate pR should refer in their object position to KF.
• Note that KF can only be retrieved by a join between TR and TF on the additional key UF.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (100/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Rel. with Identifier Alignment (MpRa) – Example

The primary key of the table TLocationCoord is now not given by the city and street, which are used
in the table TAddress that relates clients to their addresses, but is given by the latitude and longitude
of locations.
TClient(ssn,name,dateOfBirth ,hobbies)

TLocationCoord(latitude ,longitude,city,street) key[TLocation]: city,street

TAddress(client,locCity,locStreet)

FK: TAddress[client] -> Tclient[ssn]

FK: TAddress[locCity,locStreet] -> TLocationCoord[city,street]

Mapping: The Address table is mapped to an address object property, for which the ontology asserts
that the domain is the class Person and the range an additional class Location, corresponding to the
Location table.

mappingId MAddressCoord
source SELECT client, latitude, longitude

FROM TAddress JOIN TLocationCoord ON locCity = city AND locStreet = street

target :C/{client} :address :LC/{latitude}/{longitude} .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (101/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Relationship with Merging (MpRm)

Relational schema and constraints:
TF(KF,AF)

TE(KE,KEF,AE) E

KE AE

F

KF AF

R
(, 1)

Mapping assertion:
s : TE

t : :E/{KE} pR :F/{KEF} .

Ontology axioms:
∃pR ⊑ CE

∃p−R ⊑ CF

For the application of the mapping pattern, we observe the following:
• Such pattern is characterized by a table TE in which the foreign key KEF to a table TF is disjoint

from its primary key KE.
• The table TE is mapped to an object property pEF, whose subject and object are derived

respectively from KE and KEF.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (102/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Relationship with Merging (MpRm) – Example

The relationship between a client and its unique billing address has been merged into the TClient
table. The ontology defines a billingAddress object property, whose domain is the Client class and
whose range is the Location class.
TLocation(city,street)

TClient(ssn,name,dateOfBirth ,billCity ,billStreet ,hobbies)

FK: TClient[billCity ,billStreet] -> TLocation[city,street]

Mapping: The billing address information is extracted by a mapping from the TClient table to
billingAddress.

mappingId MBillingAddress
source SELECT ssn, billCity, billStreet FROM TCLient

target :C/{ssn} :billingAddress :L/{billCity}/{billStreet} .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (103/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: 1-1 Relationship with Merging (MpR11m)

Relational schema and constraints:
TE(KE,AE,KF,AF) keyTE

(KF)

VR(KE,KF) = πKE ,KF (TE)

VE(KE,AE) = πKE ,AE (TE) VF(KF,AF) = πKF ,AF (TE) E

KE AE

F

KF AF

R
(1, 1) (1, 1)

Mapping assertion:
s : TE

t : :F/{KF} rdf:type CF .
{ :F/{KF} dA {A} . }A∈KF∪AF

:E/{KE} pR :F/{KF} .

Ontology axioms:
{∃dA ⊑ CF}A∈KF∪AF

∃pR ⊑ CE

∃p−R ⊑ CF

For the application of the mapping pattern, we observe the following:
• The pattern could be applied when a table TE has a primary key KE and an additional key KF.
• Moreover, domain knowledge of the ontology indicates that objects with IRI :F/{KF} are relevant

in the domain, and that they have data properties that correspond to the attributes AF of TE.
• When this pattern is applied, the key KF and the attributes AF, can be projected out from TE,

resulting in a view VE to which further patterns can be applied, including SR11m itself.
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (104/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: 1-1 Relationship with Merging (MpR11m) – Example
A single table TUniversity, containing the information about universities, contains also information
about their rector. The given ontology contains both a University and a Rector class.
TUniversity(uname,numfaculties ,recssn,recname,recdob,salary)

key[TUniversity]: recssn

Mapping: The attribute recssn in TUniversity, identifying the rector, is used to form the IRIs for the
instances of Rector, and the attributes recname and recdob, intuitively belonging to the rector, are
mapped to data properties that have as domain Rector (as opposed to University).

mappingId MUniversity
source SELECT uname, numfaculties FROM TUniversity

target :U/{uname} rdf:type :University ; :numfac {numfaculties} .

mappingId MRector
source SELECT recssn, recname, recdob FROM TUniversity

target :P/{recssn} rdf:type :Rector ;

:ssn {recssn} ; :name {recname} ; :dob {recdob} .

mappingId MhasRector
source SELECT uname, recssn FROM TUniversity

target :U/{uname} :hasRector :P/{recssn} .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (105/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: 1-1 Relationship with Merging (MpR11m) – Notes

• Notice that to apply pattern MpR11m, domain knowledge is inherently required to determine to
which class the attributes should be associated.

• For example, assume that the table TUniversity contains an attribute for the salary of the rector.
Then, we have two possibilities:
• the salary is considered a property of the rector, e.g., if the salary is negotiated individually by the

rector.
• the salary is considered a property of the university, e.g., if the salary of the rector is determined by

some regulation of the university.

Distinguishing which of these two possibilities is the correct one, requires in-depth knowledge
about the domain.

• The necessary domain knowledge may also come from the ontology, e.g., if the data properties
corresponding to the attributes are already present in the ontology, and their domain has been
declared.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (106/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Reified Relationship (MpRR) – Attribute case
Relational schema and constraints:

TE

(
KE,AE

)
TR

(
KRE,KRF,AR

)TF

(
KF,AF

)
E

KE AE

F

KF AF

R

AR

Mapping assertion:
s : TR

t : :R/{KRE}/{KRF} rdf:type CR .
{ :R/{KRE}/{KRF} dA {A} . }A∈KRE∪KRF∪AR

:R/{KRE}/{KRF} pRE :E/{KRE} .
:R/{KRE}/{KRF} pRF :F/{KRF} .

Ontology axioms:
∃pRE ⊑ CR ∃pRF ⊑ CR

∃p−RE ⊑ CE ∃p−RF ⊑ CF

{ ∃d−A ⊑ CR }A∈KRE∪KRF∪A

For the application of the mapping pattern, we observe the following:
• The pattern applies to a table TR whose primary key is partitioned in (at least) two parts KRE and

KRF that are foreign keys to additional tables, and there are additional attributes AR in TR.
• Since TR corresponds to a conceptual element that has itself properties (corresponding to AR), to

represent it in the ontology we require a class CR whose instances have an IRI :R/{KRE}/{KRF}.
• The mapping ensures that each components of the relationship is represented by an object

property (pRE, pRF), and that the tuples instantiating them can all be derived from TR alone.
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (107/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Reified Relationship (MpRR) – n-ary relationship case
Relational schema and constraints:

TG

(
KG,AG

)
TR

(
KRE,KRF,KRG,AR

)
TE

(
KE,AE

)
TF

(
KF,AF

)
E

KE AE

F

KF AFGKG AG

R

AR

Mapping assertion: KR := KRE ∪ KRF ∪ KRG
s : TR

t : :R/{KR} rdf:type CR .
{ :R/{KR} dA {A} . }A∈KR∪AR

:R/{KR} pRE :E/{KRE} .
:R/{KR} pRF :F/{KRF} . :R/{KR} pRG :G/{KRG} .

Ontology axioms:
∃pRE ⊑ CR ∃pRF ⊑ CR ∃pRG ⊑ CR

∃p−RE ⊑ CE ∃p−RF ⊑ CF ∃p−RG ⊑ CG

{ ∃d−A ⊑ CR }A∈KR∪AR

For the application of the mapping pattern, we observe the following:
• The pattern applies to a table TR whose primary key is partitioned in at least three parts KRE,

KRF, and KRG, that are foreign keys to three additional tables.
• Additional attributes AR might also be present in TR.
• Apart from the arity of the relationship, the pattern behaves analogously to MpRR for the

attribute case.
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (108/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Reified Relationship (MpRR) – Example
Consider a table TExam containing information about university exams, (which involve a student, a
course, and a professor teaching that course), that has foreign keys towards three tables, namely
TStudent, TCourse, and TProfessor.
TExam(student,course,professor,grade)

TStudent(ssn,sname) FK: TExam[student] -> TStudent[ssn]

TCourse(cid,cname,credits) FK: TExam[course] -> TCourse[cid]

TProfessor(ssn,pname,level) FK: TExam[professor] -> TProfessor[ssn]

Mapping: This information is represented by a relationship that is inherently ternary. The ontology
should contain a class Exam corresponding to the reified relationship, connected via three object
properties to the classes Student, Course, and Professor. The mapping ensures that the class Exam
is instantiated with objects whose IRI is constructed from the identifiers of the component classes.

mappingId MExam
source SELECT student, course, professor , grade FROM TExam

target :E/{student}/{course}/{professor} rdf:type :Exam ;

:examOf :P/{student} ;

:examFor :C/{course} ;

:examBy :P/{professor} ;

:examGrade {grade} .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (109/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Hierarchy (MpH)

Relational schema and constraints:
TE(KE,AE)

TF(KFE,AF)
F AF

E
KE

AE

Mapping assertions:
s : TF

t : :E/{KFE} rdf:type CF .
{ :E/{KFE} dA {A} . }A∈AF

Ontology axioms:
CF ⊑ CE

{ ∃d−A ⊑ CF }A∈AF

For the application of the mapping pattern, we observe the following:
• The pattern considers a table TF whose primary key is a foreign key to a table TE.
• Then, TF is mapped to a class CF in the ontology that is a sub-class of the class CE to which TE

is mapped.
• Hence, CF “inherits” the template :E/{·} of CE, so that the instances of the two classes are

“compatible”.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (110/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Hierarchy (MpH) – Example
Consider a table TPerson containing information about persons, and a table TStudent containing
information about students, which has a foreign key towards TPerson.
TPerson(ssn,name,dateOfBirth)

TStudent(ssn,sid,credits) FK: TStudent[ssn] -> TPerson[ssn]

Mapping: The two tables TPerson and TStudent are mapped to two classes Person and Student,
respectively, each with data properties corresponding to the attributes of the table. Moreover, the
ontology will contain an axiom stating that Student is a sub-class of Person.

mappingId MPerson
source SELECT ssn, name, dob FROM TPerson

target :P/{ssn} rdf:type :Person ;

:name {name} ;

:dob {dateOfBirth} .

mappingId MStudent
source SELECT ssn, sid FROM TStudent

target :P/{ssn} rdf:type :Student ;

:studentId {sid} ;

:credits {credits} .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (111/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Hierarchy with Identifier Alignment (MpHa)

Relational schema and constraints:
TE(KE,AE)

TF(KF,UF,AF)

keyTF
(UF)

TE(KE,AE)

VF(KF,UF,AF) = TF

keyVF
(KF)

F
KF

AF

E
KE

AE

Mapping assertions:
s : TF

t : :E/{UF} rdf:type CF .

{ :E/{UF} dA {A} . }A∈KF∪AF

Ontology axioms:
CF ⊑ CE

{ ∃d−A ⊑ CF }A∈KF∪AF

For the application of the mapping pattern, we observe the following:
• Such pattern is like MpH, but the foreign key in TF is over a key UF that is not primary.
• The objects for CF have to be built out of UF, rather than out of its primary key KF.
• For this purpose, the pattern creates a view VF in which UF is the primary key, and the foreign

key relations are preserved.
Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (112/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Hierarchy with Indentifier Alignment (MpHa) – Example
Consider the tables TPerson and TStudent of the previous example, but assume now that the primary
key of TStudent is sid. Consider also an additional table TEnrolled, recording course enrollments.
TPerson(ssn,name,dateOfBirth)

TStudent(sid,ssn,credits) FK: TStudent[ssn] -> TPerson[ssn] key[TStudent]: ssn

TEnrolled(student,course) FK: TEnrolled[student] -> TStudent[sid]

Mapping: By applying pattern MpHa, we identify the instances of Student by their ssn, and we create
a view VStudent(sid,ssn,credits). But now, considering this view instead of TStudent, in order to
map TEnrolled into an object property enrolledIn, we need to apply pattern MpRa rather than MpR.

mappingId MPerson
source SELECT ssn, name, dob FROM TPerson

target :P/{ssn} rdf:type :Person ; :name {name} ; :dob {dateOfBirth} .

mappingId MStudent
source SELECT sid, ssn, credits FROM TStudent

target :P/{ssn} rdf:type :Student ; :studentId {sid} ; :credits {credits} .

mappingId MEnrolled
source SELECT ssn, course FROM TEnrolled JOIN TStudent ON student = sid

target :P/{ssn} :enrolledIn :C/{course} .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (113/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Clustering Entity to Class (MpCE2C)

Relational schema and constraints:
TE(K,A),
B ⊆ K ∪ A such that partitionD(B,TE)

{ VEv (K,A) = σB=v(TE) }v∈πB(TE)

E

K A
B ⊆ K ∪ A

such that partitionD(B,E)

Mapping assertions:
{ s : σB=vTE

t : :E/{K} rdf:type Cv
E . }v∈πB(TE)

Ontology axioms:
{ Cv

E ⊑ CE }v∈πB(TE)

For the application of the mapping pattern, we observe the following:
• This pattern is characterized by a table TE corresponding to a class CE, and a derivation rule

defining sub-classes of CE according to the values for attributes B in TE.
• Accordingly, instances in TE can be mapped to ontology objects in the sub-classes Cv

E of CE.
• As for other patterns, this pattern produces views according to the possible values v of B.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (114/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Mapping pattern: Clustering Entity to Class (MpCE2C) – Example
Consider a table TPerson containing persons with an attribute defining their gender and ranging over
’F’ or ’M’.
TPerson(ssn,name,dob,gender)

Mapping: The ontology defines a class Person with two subclasses Female and Male. Pattern
MpCE2C clusters the table according to the gender attribute, and instantiates the classes Female
and Male accordingly.

mappingId MPerson
source SELECT ssn, name, dob FROM TPerson

target :P/{ssn} rdf:type :Person ; :name {name} ; :dob {dateOfBirth} .

mappingId MFemale
source SELECT ssn FROM TPerson WHERE gender = ’F’

target :P/{ssn} rdf:type :Female .

mappingId MMale
source SELECT ssn FROM TPerson WHERE gender = ’M’

target :P/{ssn} rdf:type :Male .

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (115/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Further mapping patterns

• Similarly to the previous pattern, which clusters instances of a class into different subclasses, we
can consider patterns that generate a cluster of data properties, or a cluster of object properties,
according to different criteria that can be applied to the source data.

• In order to understand when such patterns can be applied, and then define the corresponding
mapping assertions and the expected underlying ontology axioms, we can proceed in a way
similar to the case of a cluster of (sub)classes.

• More in general, we might conceive also additional patterns that involve more complex
operations or queries over the data.

• Also, in any (sufficiently complex) real-world integration scenario, many cases will occur for
which none of the specified pattern applies.

• Therefore, based on (the knowledge that the designer has about) the domain semantics, and the
constructs that are available in the ontology, in general also ad-hoc mappings need to be defined.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (116/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Additional considerations on IRI-templates

• As we have seen, it is a good practice to include in the IRI-template a prefix that depends on the
kind of object (i.e., the class).

• In the case of ISA hierarchies, one has to pay attention on whether to use the same or different
templates for the various classes in the hierarchy:
• Using the same template allows for specifying joins across the various classes of the hierarchy.
• Using different templates allows for differentiating the different classes and for applying stricter pruning

of queries (as we have seen).

• One has also to consider whether to include info about the data source as part of the
IRI-template or not:
• In general, this is not done, which makes the data sources transparent to the user who queries.
• By including the data source in the IRI-template, such information is recorded in the created objects.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (117/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Design scenarios for VKG mapping patterns

Depending on what information is available, we can consider different design scenarios where the
patterns can be applied:

1 Debugging of a VKG specification that is already in place.

2 Conceptual schema reverse engineering for a DB that represents the domain of interest by
using a given full VKG specification.

3 Mapping bootstrapping for a given DB and ontology that miss the mappings relating them.

4 Ontology + mapping bootstrapping from a given DB with constraints, and possibly a
conceptual schema.

5 VKG bootstrapping, where the goal is to set up a full VKG specification from a conceptual
schema of the domain.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (118/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Automating the mapping design process

• In a complex real-world scenario, understanding the domain semantics, the semantics of the
data sources, and how the sources have to be related to the global schema/ontology can be
rather resource intensive and therefore costly.

• Currently, there are no tools that completely automate this process, and it is unlikely that a
completely automated solution is possible at all.

• However, there are tools that provide automated support for the (already difficult) task of
understanding which elements in one schema (e.g., a source) can correspond to which elements
of another schema (e.g., the global schema). This task is called schema matching.

• Based on a proposed match between elements, mapping patterns can provide valuable
indications on how to convert the match into an actual mapping, i.e., how to define the (SQL)
queries that correctly relate the semantics of the sources to that of the ontology.

• Also, mapping patterns can be automatically discovered, either by considering the constraints on
the data sources, or, more interestingly, derive the constraints from the actual data, even when
they are not defined over the sources at the schema level.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (119/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)

3 Optimizing Query Answering in VKGs

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (119/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

The Ontop system [C., Cogrel, et al. 2017, Semantic Web J.], [Xiao, Lanti, et al. 2020, ISWC]

https://ontop-vkg.org/

• State-of-the-art VKG system.

• Implements the presented techniques for query answering and optimization.

• Addresses the key challenges of scalability and performance.

• Compliant with all relevant Semantic Web standards:
RDF, RDFS, OWL 2 QL, R2RML, SPARQL, and GeoSPARQL.

• Supports all major relational DBMSs:
Oracle, DB2, MS SQL Server, Postgres, MySQL, Teiid, Dremio, Denodo, etc.

• Open-source and released under Apache 2 license.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (120/123)

https://ontop-vkg.org/

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Query answering in Ontop

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (121/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

The Ontopic spinoff of unibz

https://ontopic.ai/

Funded in April 2019 as the first spin-off of the Free University of Bozen-Bolzano.

• Ontopic Studio ready to be released
• Ensures scalability, reliability, and cost-efficiency at design and runtime of VKG solutions.
• Strong focus on usability.

• Technical services
• Technical support for Ontop and Ontopic Studio.
• Customized developments.

• Consulting on adoption of VKG-based solutions for data access and integration.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (122/123)

https://ontopic.ai/

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Outline

1 Challenges in Data Access

2 Virtual Knowledge Graphs for Data Access (and Integration)

3 Optimizing Query Answering in VKGs

4 Designing VKG Mappings

5 The Ontop System

6 Conclusions

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (122/123)

Challenges in Data Access VKGs for Data Access Optimizing Query Answering Designing VKG Mappings The Ontop System Conclusions

Conclusions

• VKGs are by now a mature technology to address the challenges related to data access and
integration.

• It has been well-investigated and applied in many different scenarios mostly for the case of
relational data sources.

• The technology is general purpose, and it can be tailored towards specific domains, relying also
on standard ontologies.

• Performance and scalability w.r.t. larger datasets (volume), larger and more complex ontologies
(variety, veracity), and multiple heterogeneous data sources (variety, volume) is a challenge.

• Currently, VKGs are being investigated for alternative types of data, such as temporal data,
graph data, tree structured data, linked open data, and geo-spatial data.

• Performance and scalability are even more critical for these more complex domains.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (123/123)

Thank you!

References References

A great thank you to all my collaborators

Elena
Botoeva

Julien
Corman

Linfang
Ding

Elem
Güzel

Davide
Lanti

Marco
Montali

Alessandro
Mosca

Mariano
Rodriguez

Muro
Guohui

Xiao

Avigdor
Gal

Roee
Shraga

Roman
Kontchakov

Vladislav
Ryzhikov

Michael
Zakharyaschev

Benjamin
Cogrel

Sarah
Komla Ebri

Giuseppe
De Giacomo

Domenico
Lembo

Maurizio
Lenzerini

Antonella
Poggi

Riccardo
Rosati

Technion
Haifa

Ontopic
s.r.l.

Birkbeck
College
London

U. Roma
“La

Sapienza”

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (125/123)

References References

References I

[1] Guohui Xiao, Diego C., Roman Kontchakov, Domenico Lembo, Antonella Poggi,
Riccardo Rosati & Michael Zakharyaschev. “Ontology-Based Data Access: A Survey”. In: Proc.
of the 27th Int. Joint Conf. on Artificial Intelligence (IJCAI). IJCAI Org., 2018, pp. 5511–5519.
doi: 10.24963/ijcai.2018/777.

[2] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue & Carsten Lutz.
OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommendation. Available
at http://www.w3.org/TR/owl2-profiles/. World Wide Web Consortium, Dec. 2012.

[3] Diego C., Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini & Riccardo Rosati.
“Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family”.
In: J. of Automated Reasoning 39.3 (2007), pp. 385–429. doi: 10.1007/s10817-007-9078-x.

[4] Maurizio Lenzerini & Paolo Nobili. “On the Satisfiability of Dependency Constraints in
Entity-Relationship Schemata”. In: Information Systems 15.4 (1990), pp. 453–461.

[5] Sonia Bergamaschi & Claudio Sartori. “On Taxonomic Reasoning in Conceptual Design”. In:
ACM Trans. on Database Systems 17.3 (1992), pp. 385–422.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (126/123)

https://doi.org/10.24963/ijcai.2018/777
http://www.w3.org/TR/owl2-profiles/
https://doi.org/10.1007/s10817-007-9078-x

References References

References II

[6] Alexander Borgida. “Description Logics in Data Management”. In: IEEE Trans. on Knowledge
and Data Engineering 7.5 (1995), pp. 671–682.

[7] Diego C., Maurizio Lenzerini & Daniele Nardi. “Unifying Class-Based Representation
Formalisms”. In: J. of Artificial Intelligence Research 11 (1999), pp. 199–240.

[8] Alexander Borgida & Ronald J. Brachman. “Conceptual Modeling with Description Logics”. In:
The Description Logic Handbook: Theory, Implementation and Applications. Ed. by
Franz Baader, Diego C., Deborah McGuinness, Daniele Nardi & Peter F. Patel-Schneider.
Cambridge University Press, 2003. Chap. 10, pp. 349–372.

[9] Daniela Berardi, Diego C. & Giuseppe De Giacomo. “Reasoning on UML Class Diagrams”. In:
Artificial Intelligence 168.1–2 (2005), pp. 70–118.

[10] Anna Queralt, Alessandro Artale, Diego C. & Ernest Teniente. “OCL-Lite: Finite Reasoning on
UML/OCL Conceptual Schemas”. In: Data and Knowledge Engineering 73 (2012), pp. 1–22.
doi: 10.1016/j.datak.2011.09.004.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (127/123)

https://doi.org/10.1016/j.datak.2011.09.004

References References

References III

[11] Antonella Poggi, Domenico Lembo, Diego C., Giuseppe De Giacomo, Maurizio Lenzerini &
Riccardo Rosati. “Linking Data to Ontologies”. In: J. on Data Semantics 10 (2008),
pp. 133–173. doi: 10.1007/978-3-540-77688-8_5.

[12] Alessandro Artale, Diego C., Roman Kontchakov & Michael Zakharyaschev. The DL-Lite
Family and Relations. Tech. rep. BBKCS-09-03. Available at
http://www.dcs.bbk.ac.uk/research/techreps/2009/bbkcs-09-03.pdf. London:
School of Computer Science and Information Systems, Birbeck College, 2009.

[13] Diego C., Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini & Riccardo Rosati.
“Data Complexity of Query Answering in Description Logics”. In: Proc. of the 10th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR). 2006, pp. 260–270.

[14] Diego C., Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini & Riccardo Rosati.
“Data Complexity of Query Answering in Description Logics”. In: Artificial Intelligence 195
(2013), pp. 335–360. doi: 10.1016/j.artint.2012.10.003.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (128/123)

https://doi.org/10.1007/978-3-540-77688-8_5
http://www.dcs.bbk.ac.uk/research/techreps/2009/bbkcs-09-03.pdf
https://doi.org/10.1016/j.artint.2012.10.003

References References

References IV

[15] Stanislav Kikot, Roman Kontchakov & Michael Zakharyaschev. “Conjunctive Query Answering
with OWL 2 QL”. In: Proc. of the 13th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR). 2012, pp. 275–285.

[16] Mariano Rodriguez-Muro, Roman Kontchakov & Michael Zakharyaschev. “Ontology-Based
Data Access: Ontop of Databases”. In: Proc. of the 12th Int. Semantic Web Conf. (ISWC).
Vol. 8218. Lecture Notes in Computer Science. Springer, 2013, pp. 558–573. doi:
10.1007/978-3-642-41335-3_35.

[17] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao &
Michael Zakharyaschev. “Answering SPARQL Queries over Databases under OWL 2 QL
Entailment Regime”. In: Proc. of the 13th Int. Semantic Web Conf. (ISWC). Vol. 8796. Lecture
Notes in Computer Science. Springer, 2014, pp. 552–567. doi:
10.1007/978-3-319-11964-9_35.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (129/123)

https://doi.org/10.1007/978-3-642-41335-3_35
https://doi.org/10.1007/978-3-319-11964-9_35

References References

References V

[18] Roman Kontchakov & Michael Zakharyaschev. “An Introduction to Description Logics and
Query Rewriting”. In: Reasoning Web: Reasoning on the Web in the Big Data Era – 10th Int.
Summer School Tutorial Lectures (RW). Vol. 8714. Lecture Notes in Computer Science.
Springer, 2014, pp. 195–244. doi: 10.1007/978-3-319-10587-1_5.

[19] Marcelo Arenas, Alexandre Bertails, Eric Prud’hommeaux & Juan Sequeda. A Direct Mapping
of Relational Data to RDF. W3C Recommendation. Available at
http://www.w3.org/TR/rdb-direct-mapping/. World Wide Web Consortium, Sept. 2012.

[20] Diego C., Benjamin Cogrel, Sarah Komla-Ebri, Roman Kontchakov, Davide Lanti, Martin Rezk,
Mariano Rodriguez-Muro & Guohui Xiao. “Ontop: Answering SPARQL Queries over Relational
Databases”. In: Semantic Web J. 8.3 (2017), pp. 471–487. doi: 10.3233/SW-160217.

[21] Guohui Xiao, Davide Lanti, Roman Kontchakov, Sarah Komla-Ebri, Elem Güzel-Kalayci,
Linfang Ding, Julien Corman, Benjamin Cogrel, Diego C. & Elena Botoeva. “The Virtual
Knowledge Graph System Ontop”. In: Proc. of the 19th Int. Semantic Web Conf. (ISWC).
Vol. 12507. Lecture Notes in Computer Science. Springer, 2020, pp. 259–277. doi:
10.1007/978-3-030-62466-8_17.

Diego Calvanese (unibz + umu + ontopic) Ontology-based Data Access Made Practical EDBT-INTENDED Summer School – 8/7/2022 (130/123)

https://doi.org/10.1007/978-3-319-10587-1_5
http://www.w3.org/TR/rdb-direct-mapping/
https://doi.org/10.3233/SW-160217
https://doi.org/10.1007/978-3-030-62466-8_17

	Challenges in Data Access
	Virtual Knowledge Graphs for Data Access (and Integration)
	Representing Data in RDF and RDFS
	Representing Ontologies in OWL2QL
	Query Language – SPARQL
	Mapping an Ontology to a Relational Database
	Formalizing the VKG Framework

	Optimizing Query Answering in VKGs
	Query rewriting wrt an OWL2QL ontology

	Lecture 27-28 (30/11/2021)
	Query unfolding wrt a mapping
	Mapping saturation
	Optimization of query reformulation

	Lecture 29-30 (06/12/2021)
	Designing VKG Mappings
	The Ontop System
	Conclusions
	Appendix
	References
	

	References

