
Quantitative Reasoning about
Constraint Violations

Benny Kimelfeld
Technion Data & Knowledge Lab

tdk.cs.technion.ac.il

EDBT-INTENDED Summer School 2022
JULY 4-9, 2022, Bordeaux, France

Outline
1. Introduction & Background

2. Inconsistency Measures

3. Complexity of Calculation

4. Probabilistic Database Viewpoint

5. Responsibility Attribution

6. Concluding Remarks

Examples of Inconsistency (DBPedia)

Cullen Douglas

dbo:birthPlace

§ dbr:California
§ dbr:Florida

Marion Jones

dbo:height

§ 1.524
§ 1.778

Irene Tedrow

dbo:deathPlace

§ dbr:California
§ dbr:Hollywood,_Los_Angeles
§ dbr:New_York_City

dbo:parent

Melinda SaxeDavid Saxe

dbo:parent
dbo:birthYeardbo:birthYear

19651969

Inconsistency

• “Inconsistent data”: integrity constraints violated
• Why so?

– Imprecise data sources
§ Crowd, Web pages, social encyclopedias, sensors, …

– Imprecise data generation
§ Natural-language processing, sensor/signal processing,

image recognition, …

– Conflicts in data integration
§ Crowd + enterprise data + KB + Web + ...

– Data staleness
§ Entities change address, status, ...

– And so on ...

Measuring Inconsistency

Who studies it?

• KR research: measuring the inconsistency of a KB
(set of logical statements)

• DB research: constraint mining, data cleaning,
probabilistic databases

• AI/SRL research: Markov Logic Networks,
Probabilisitic Soft Logic, …

To what extent are constraints being violated?

Inconsistency Measures to Soften Logic
Inconsistency measures have been around,
explicitly or implicitly, playing different roles

Approximate
constraints

Low level of inconsistency under
some measure of choice

Prob. DB via
soft rules

Start with an initial database 𝐷, make
random changes to build 𝐷! :

Pr(𝐷!) ~ 𝐹" intervention(𝐷′ | 𝐷)
0 𝐹#(inconsistency(𝐷′))

Markov Logic
Start with a space of possible worlds 𝐷 :

Pr(𝐷)~ 𝐹(inconsistency(𝐷))

Some Usage of Inconsistency Measures

Progress indication
for data repairing

processes

[Livshits-Kochirgan-Tsur-
Ilyas-K-Roy-21]

Attribution of
responsibility to

inconsistency

Notions of soft
(weak/approx)

constraints

[Hunter-Konieczny-10]
[Yun-Vesic-Croitoru-
Bisquert-18]
[Deutch-Frost-Gilad-
Sheffer-20]
[Livshits-K-21]
…

[Kivinen-Mannila-95]
[Sen-Deshpande-Getoor-09]
[Chu-Ilyas-Papotti-13]
[Rekatsinas-Chu-Ilyas-Ré-17]
[Kruse-Naumann-18]
[Rammelaere-Geerts-18
…

Plan for this Lecture

• Discuss inconsistency measurement from the
viewpoint of the usages

• Reference past research projects with
collaborators

• Focus on algorithms and complexity analysis for
relevant tasks

Leopoldo Bertossi Ester Livshits Sudeepa RoyIhab Ilyas

Main collaborators

• Key constraints
– Person(ssn,name,birthCity,birthState)

• Functional Dependencies (FDs)
– birthCity⟶ birthState
– Generally, X⟶	Y	where X and Y are sets of attributes

• Conditional FDs
– zip	⟶ city	whenever country=“France”

• Denial constraints
– not[Parent(x,y)	&	Parent(y,x)] (forbidden patterns)

• Referential (foreign-key) constraints
– Parent(x,y)	⟶ Person(x)	&	Person(y)

Cf. [Fan-Geerts-12] for a comprehensive study of constraints
in data quality management

Types of Integrity Constraints
Anti-monotonic constraints:

consistency preserved by subsets

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

birthCity⟶	birthState
person	⟶	birthCity

Example of Functional Dependencies

Douglas LA CA

Douglas Miami FL

Tedrow LA CA

Tedrow LA NYC

Jones LA CA

“Conflict Graph”

X

X

X

X

Repairs

• Inconsistent database violates constraints
– Representation: (Σ, 𝐷) where the database 𝐷 violates

the set Σ of constraints

• Repair: a consistent variant via a legitimate fix
– Subset repairs: set-max consistent subset
– Cardinality repairs: cardinality-max consistent subset
– More: update repairs (value updates), symmetric-

difference repairs (tuple insertion/deletion), …
– [Arenas-Bertossi-Chomicki-99]

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

(Subset) repair Cardinality repair

birthCity⟶	birthState

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

person	⟶	birthCity

Example: Subset/Cardinality Repairs

• Repair checking
– Given 𝐷 and 𝐷′, is 𝐷′ a repair of 𝐷?
– [Chomicki-Marcinkowski-05] [Afrati-Kolaitis-09]

• Consistent Query Answering (CQA)
– Which query answers hold albeit inconsistency? Tuples in 𝑄(𝐷′) for

all repairs 𝐷′ [Arenas+99] [Koutris-Wijsen-17]

• Repairing / Cleaning
– Compute a (good/best) repair
– [Bertossi+08] [Kolahi-Lakshmanan-09] [Livshits-K-Roy-18]

• Repair counting
– For databases [Maslowski-Wijsen-14] [Livshits+21] [Calautti+22]
– For knowledge bases [DeBona-Grant-18] [Hunter-Konieczn-18]

Classic Repair Problems

Outline
1. Introduction & Background

2. Inconsistency Measures

3. Complexity of Calculation

4. Probabilistic Database Viewpoint

5. Responsibility Attribution

6. Concluding Remarks

we are here

Definition: Inconsistency Measure

• Notation:
– Σ denotes a set of integrity constraints
– 𝐷 denotes a database

• An inconsistency measure is a function 𝐼 that
maps each pair (Σ, 𝐷) to a non-negative number,
such that 𝐼 Σ, 𝐷 > 0 iff 𝐷 violates Σ
– Intuitively, 𝐼 Σ, 𝐷 > 𝐼 Σ′, 𝐷′ means that 𝐷 is farther

from satisfying Σ than 𝐷′ from satisfying Σ′

• We focus on anti-monotonic Σ (e.g., FDs, DCs)

Basic Inconsistency Measures
• Drastic: 1 or 0 (inconsistent or consistent)

– [Thimm-17] (Later: makes sense in responsibility attribution)

• #violations (i.e., set-min inconsistent subsets)
– [Kivinen-Mannila-95] [Hunter-Konieczny-08] (“MI Shapley

Inconsistency”)

• #problematic tuples (i.e., tuples in violations)
– [Kivinen-Mannila-95] [Grant-Hunter-11]

• #repairs: number of maximal consistent subsets
– [Grant-Hunter-11]

• repair_cost: minimal #tuples to delete to attain
consistency (cardinality repair)
– [Huhtala+98] [Kivinen-Mannila-95] [Grant-Hunter-13] [Bertossi-

18] [Rammelaere-Geerts-18] (constraint “confidence”)

Example 1

person city state
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA
Saxe Vegas NV

Σ = {person⟶ city , city⟶ state}

person city state
Douglas LA CA
Tedrow LA CA
Jones LA CA
Saxe Vegas NV

person city state
Douglas Miami FL
Tedrow LA CA
Jones LA CA
Saxe Vegas NV

person city state
Douglas Miami FL
Tedrow LA NYC
Saxe Vegas NV

Repairs

𝐷

Problematic

X

X

X

X

Violations

drastic Σ, 𝐷 = 1 #violations Σ, 𝐷 = 4 #problematic Σ, 𝐷 = 5

#repairs Σ, 𝐷 = 3 repair_cost Σ, 𝐷 = 2

Example 2

person city state
𝑝" LA CA
𝑝# LA CA
⋮ ⋮ ⋮
𝑝$% LA CA

Douglas LA NY

person city state
𝑝" LA CA
𝑝# Miami FL
⋮ ⋮ ⋮
𝑝$% Utica NY

Douglas LA NY

drastic Σ, 𝐷" = 1 drastic Σ, 𝐷# = 1

#violations Σ, 𝐷" = 50 #violations Σ, 𝐷# = 1

#problematic Σ, 𝐷" = 51 #problematic Σ, 𝐷# = 2

#repairs Σ, 𝐷" = 2 #repairs Σ, 𝐷# = 2

repair_cost Σ, 𝐷" = 1 repair_cost Σ, 𝐷# = 1

5050

Σ = {person⟶ city , city⟶ state}

Some Concepts of Soft Constraints
• Mining approximate constraints

– [Kivinen-Mannila-95]: #violations, #problematic, repair_cost ;
[Huhtala+98]: repair_cost ; DCFiner [Pena-Almeida-Naumann-19]:
#violations ; [Livshits-Heidari-Ilyas-K-20] abstraction

• Markov Logic Networks [Richardson-Domingos-06]
– Factor for every violation/satisfaction (weighted #violations)
– Symmetric – every possible tuple is a variable
– Instances: DeepDive [DeSa+16], Pr. Datalog+/- [Gottlob+11]
– Similar concept: PrDB [Sen-Deshpande-Getoor-09]

• Soft-key constraints [Jha-Rastogi-Suciu-08]
– Factor for every key violation of a specified size
– Probabilistic graphical model – similar to MLN (factor for each

violation/satisfaction)

• Approximate multivalued dependencies (MVD)
– Conditional entropy as a measure of satisfaction [Kenig-Suciu-20]

Postulates for Inconsistency Measures

• Goodness properties (postulates) of
inconsistency measures studied by the KR
community
– [Hunter-Konieczny-08] [Grant-Hunter-11] [Thimm-17] [Grant-

Parisi-19] …
– Different focus from databases

§ KB = set of logical statements
§ Postulates mainly talk about how changes in the KB

affect the measure

• We studied properties desired for progress
indication in data repairing

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

The Basic Measures for Repairing Progress

Monotonicity Continuity Progression
Drastic ü û û

#violations ü/û û ü

#problematic ü/û û ü

#repairs û ü û

repair_cost ü ü ü

Monotonicity
Stricter constraints
can only increase

inconsistency

Continuity
A single operation

has a limited impact
on inconsistency

Progression
We can always find
an op that reduces

inconsistency

Denial constraints / functional dependencies

“acceptable
pacing”

“continuously
revised estimates”

[Luo-Naughton-Ellmann-Watzke-04]

Studied in KR
(w./ differences)
[Grant-Parisi-19]

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

Experiments

??

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

Rationality & Tractability?

Tractable measure with all 3?

Monotonicity Continuity Progression
Drastic ü û û

#violations ü/û û ü

#problematic ü/û û ü

#repairs û ü û

repair_cost ü ü ü

NP-hard for DCs [Lopatenko-Bertossi-07] ; even FDs [Livshits-K-Roy-18]

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

Repair-Cost as an ILP

minimize: *
!∈#

𝑥!

subject to:
∀violation $ *

!∈$

𝑥! ≥ 1

∀! 𝑥!∈ {0,1}

𝑥! for every tuple 𝑡

𝑥! = 1 : delete 𝑡

Recall: min set of
tuples that violates
a constraint (DC)

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

Linear Relaxation

minimize: *
!∈#

𝑥!

subject to:
∀violation $ *

!∈$

𝑥! ≥ 1

∀! 𝑥!∈ {0,1}

𝑥! for every tuple 𝑡

𝑥! = 1 : delete 𝑡

0 ≤ 𝑥!≤ 1
Recall: min set of

tuples that violates
a constraint (DC)

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

Rationality & Tractability?

Tractable measure with all 3?

Monotonicity Continuity Progression
Drastic ü û û

#violations ü/û û ü

#problematic ü/û û ü

#repairs û ü û

repair_cost ü ü ü

Poly. time

frac_cost ü ü ü

Outline
1. Introduction & Background

2. Inconsistency Measures

3. Complexity of Calculation

4. Probabilistic Database Viewpoint

5. Responsibility Attribution

6. Concluding Remarks

we are here

Complexity Analysis

• We now study the complexity of computing the
basic measures

• Restrictions:
– Functional dependencies

§ Some results apply to denial constraints… and to any anti-
monotonic constraints where we can materialize all (minimal)
violations

– Coarse-grained complexity (exptime vs. ptime)

Basic Inconsistency Measures
• Drastic: 1 or 0 (inconsistent or consistent)

– [Thimm-17]

• #violations (i.e., set-min inconsistent subsets)
– [Kivinen-Mannila-95] [Hunter-Konieczny-08] (“MI Shapley

Inconsistency”)

• #problematic tuples (i.e., tuples in violations)
– [Kivinen-Mannila-95] [Grant-Hunter-11]

• #repairs: number of maximal consistent subsets
– [Grant-Hunter-11]

• repair_cost: minimal #tuples to delete to attain
consistency (cardinality repair)
– [Huhtala+98] [Kivinen-Mannila-95] [Grant-Hunter-13] [Bertossi-

18] [Rammelaere-Geerts-18] (constraint “confidence”)

Polynomial time (basic SQL)

Polynomial time (basic SQL)

Polynomial time (basic SQL)

Next

Next

Studied Computational Problems
Problem 1: Compute a Cardinality Repair (repair_cost)

Params: Relation schema S ; set Σ of constraints

Input: Relation 𝐷 over S

Goal: Find a smallest 𝐸 ⊆ 𝐷 s.t. 𝐷\𝐸 satisfies Σ

Problem 2: Repair Counting (#repairs)

Params: Relation schema S ; set Σ of constraints

Input: Relation 𝐷 over S

Goal: Compute the number of repairs of 𝐷 w.r.t. Σ

Greatest
consistent
subset

Set-max
consistent

subsets

Data Complexity

• Typically, the problems we consider involve:
– A database 𝐷 (typically one relation)
– A set Σ of constraints
– Both 𝐷 and Σ are over a relational schema S

• When we analyze the complexity of problems, we adopt
the conventional data complexity [Vardi-82]

• Hence, the input consists of only the database 𝐷;
everything else (e.g., S and Σ) is fixed
– Treated as parameters

• Hence, every S and Σ give rise to a separate
computational problem P𝐒,'

• Possible that one P𝐒,' is tractable & other P𝐒(,'(is hard

Classifications (Dichotomies)

• In our case, every set of functional dependencies
can have a different complexity

• Hence, we aim for complete characterizations
that will determine the complexity of every set of
functional dependencies
– A.k.a. dichotomy results or meta-theorems

X-hard PTime

P𝐒,(
P𝐒!,(!

Problem 1: Cardinality Repair

Compute a Cardinality Repair (repair_cost)

Params: Relation schema S ; set Σ of constraints

Input: Relation 𝐷 over S

Goal: Find a smallest 𝐸 ⊆ 𝐷 s.t. 𝐷\𝐸 satisfies Σ

Fixed Same as computing the
size of such 𝐸 w/o

finding 𝐸 itselfWeighted version: tuples have
cost; “smallest” replaced w/

“least total score”

Vertex Cover with Structure

person birthCity birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA

birthCity⟶	birthState
person	⟶	birthCity

Douglas LA CA

Douglas Miami FL

Tedrow LA CA

Tedrow LA NYC

Jones LA CA

“Conflict Graph”

Note: While minimum VC is NP-
hard, the conflict graphs are not
general graphs; they are special
graphs defined by relations and a
fixed set of FDs

Cardinality repair of 𝐷
= min VC of the conflict graph

Example

∑ = {:id → fname , fname → :id , :id → city , :id room → :loor}

fid fname room floor city
F01 HQ 322 3 Paris
F02 HQ 122 30 Madrid
F02 HQ 122 1 Madrid
F03 Lab1 B35 3 London
F01 Lab1 B25 2 London

Simplification 1: Common lhs

∑ = {facility → city , facility room → :loor}

{∅ → city , room → :loor}

x x

facility room floor city
HQ 322 3 Paris
HQ 322 30 Madrid
HQ 122 1 Madrid

Lab1 B35 3 London

Simplification 2: Consensus

∑ = {∅ → city , room → :loor}
x x

{room → :loor}

facility room floor city
HQ 322 3 Paris
HQ 322 30 Madrid
HQ 122 1 Madrid

Simplification 3: Matching

∑ = {:id → fname , fname → :id , :id → city , :id room → :loor}
x x

{∅ → city , room → :loor}

x x x x

fid fname room floor city
F01 HQ 322 3 Paris
F02 HQ 122 30 Madrid
F02 HQ 122 1 Madrid
F03 Lab1 B35 3 London
F01 Lab1 B25 2 London

Reduction to
Maximum-Weight
Matching of a
bipartite graph

Repeated Simplification

∑ = {:id → fname , fname → :id , :id → city , :id room → :loor}
x x

{∅ → city , room → :loor}

x x x x

{room → :loor}

{∅ → :loor}

{}

The Unified Simplification Rule

Let Σ be a set of FDs, 𝑋,𝑌 attribute sets such that:
1. Sets 𝑋 and 𝑌 functionally determine each other

i.e., Closure∑(𝑋) = Closure∑(𝑌)

2. Every FD in Σ contains either 𝑋 or 𝑌 in its lhs

Finding a cardinality repair under Σ
reduces in polynomial time to

finding a cardinality repair under Σ − 𝑋𝑌.

Example 1: X	=	Y (Common lhs)

∑ = {facility → city , facility room → :loor}

{∅ → city , room → :loor}

x x

facility room floor city
HQ 322 3 Paris
HQ 322 30 Madrid
HQ 122 1 Madrid

Lab1 B35 3 London

𝑋 =	{facility}
𝑌 =	{facility}

Example 2: X	=	∅ (Consensus)

∑ = {∅ → city , room → :loor}
x x

{room → :loor}

facility room floor city
HQ 322 3 Paris

HQ 322 30 Madrid
HQ 122 1 Madrid

𝑋 =	∅
𝑌 =	{city}

Example 3: General X,Y (Matching)

∑ = {:id → fname , fname → :id , :id → city , :id room → :loor}
x x

{∅ → city , room → :loor}

x x x x

fid fname room floor city
F01 HQ 322 3 Paris

F02 HQ 122 30 Madrid
F02 HQ 122 1 Madrid

F03 Lab1 B35 3 London

𝑋 =	{fname}
𝑌 =	{fid}

F01 Lab1 B25 2 London

Completeness

• Simplification rule simplifies the computation of
repair_cost by eliminating attributes and
dependencies

• Not an arbitrary algorithmic trick…
• It is complete for computing repair_cost!

THEOREM [Livshits-K-Roy-20]

Fix any set Σ of FDs. The following are equivalent (under
standard complexity assumptions):

1. The measure repair_cost Σ,R can be computed
(and a cardinality repair can be found) in poly-time

2. The FD set Σ can be simplified until emptied

Proof Technique: Fact-Wise Reduction

• How do we prove hardness for infinitely many FD sets?
• A common approach is the fact-wise reduction

• General mechanism to translate (reduce) problems on
(𝑆), Σ)) to problems on (𝑆*, Σ*) ; if former hard, so latter

Let 𝑆) and 𝑆* be database schemes with the constraints
Σ) and Σ*. A fact-wise reduction is a mapping from facts
𝑅)(𝑎), … , 𝑎+) over 𝑆) to facts 𝑅*(𝑏), … , 𝑏,) over 𝑆* that:

– Is injective (one-one)
§ Examples: 𝑎, 𝑏 ⇒ (𝑎, 𝑎. 𝑏, 𝑏) 𝑎, 𝑏, 𝑐 ⇒ (𝑏, 𝑎. 𝑏. 𝑐)

– Preserves consistency and inconsistency
– Is computable in polynomial time

[Livshits-K-Roy-20]

About the Proof of Hardness

Simplification

Direct proofs
of hardness

FW reductions

Approximations

• A 2-approx of repair-cost can be obtained easily using a
2-approx for Vertex Cover
– Can be generalized to denial constraints (constant approx)

• [Miao et al.] used the dichotomy and fact-wise reductions
in follow-up work on approx bounds for cardinality repair

• Improved known upper bounds for general VC in the case
of conflict graphs, based on the set of FDs

• Developed optimization techniques and heuristics to
establish efficient, high-quality approximations

[Miao-Cai-Li-Gao-Liu-VLDB20]

Problem 2: Counting Repairs

Problem 2: Repair Counting (#repairs)

Params: Relation schema S ; set Σ of constraints

Input: Relation 𝐷 over S

Goal: Compute the number of repairs of 𝐷 w.r.t. Σ

ssn ⟶ city
city ⟶ state

ssn ⟶ name
ssn country ⟶ license#

faculty ⟶ dean

faculty ⟶ dean
building ⟶ address

faculty ⟶ dean
faculty professor ⟶ room#

ssn ⟶ uID
uID ⟶ email

email ⟶ ssn

Examples

ssn ⟶ city
city ⟶ state

ssn ⟶ name
ssn country ⟶ license#

faculty ⟶ dean
faculty ⟶ dean

building ⟶ address

faculty ⟶ dean
faculty professor ⟶ room#

ssn ⟶ uID
uID ⟶ email

email ⟶ ssn

Hard Poly time

Repair Counting as MIS Counting

• For FDs, a repair is a Maximal Independent Set
(MIS) of the conflict graph of the database

• Hence, repair counting amounts to MIS counting
– Over conflict graphs
– Again, these are not general graphs…

Douglas LA CA

Douglas Miami FLTedrow LA CA

Tedrow LA NYC

Jones LA CA

Counting Set-Minimal Repairs

• MIS counting is #P-complete [Provan-Ball-83] and
inapproximable [Roth-96]

• Special tractable cases, e.g., P4-free graphs
– P4-free graph (a.k.a. cograph): no induced path of length 4

• What about the conflict graphs?
• If the constraints are such that every conflict graph is
P4-free, then the repairs can be counted in poly. time

• This is also a necessary condition!

Not P4-free P4-free

Dichotomy Theorem

THEOREM [Livshits-K-Wijsen-21]
The following are equivalent (under standard complexity
assumptions) for every fixed set of FDs:

1. Repairs can be counted in poly. time
2. Every conflict graph is P4-free

Extension: classification for counting repairs that satisfy a CQ
(w/o self-joins) [Calautti+22]

Tractable Characterization: lhs-Chain

The property that every conflict graph is P4-free
has a syntactic characterization:
THEOREM [Livshits-K-Wijsen-21]
The following are equivalent for every set Σ of FDs:

1. Every conflict graph is P4-free
2. For every two FDs X) → 𝑌) and 𝑋* → 𝑌*, either X)

⊆ 𝑋* or X* ⊆ 𝑋)
• Up to equivalence!

Testing: take a minimal cover of Σ (i.e., remove redundancy)
and test whether it is syntactically an lhs-chain

X" → 𝑌", … , X# → 𝑌#
so that X" ⊆ X$ ⊆…X#

ssn ⟶ city
city ⟶ state

ssn ⟶ name
ssn country ⟶ license#

faculty ⟶ dean
faculty ⟶ dean

building ⟶ address

faculty ⟶ dean
faculty professor ⟶ room#

ssn ⟶ uID
uID ⟶ email

email ⟶ ssn

Hard Poly timeApprox.
open…

Coincides w/
long-standing
open problem
(#max
matchings)

Inapproximable
[Calautti+22]

Proof Structure

The proof is fairly simple:
1. If Σ is an lhs-chain, conflict graph is P4-free

§ Use a known characterization of P4-freeness: cograph

2. If Σ is not an lhs-chain:
§ Take a minimal cover and use it to construct a

small example w/ induced P4	
§ Show a fact-wise reduction from {𝐴 → 𝐵 , 𝐵 → 𝐴}

– Hardness for 𝐴 → 𝐵 , 𝐵 → 𝐴 is easy

What we need to prove:
Let Σ be a set of FDs.
1. If Σ is an lhs-chain up to equivalence, then the

conflict graph is P4-free.
2. Otherwise repair counting is #P-hard.

Use it again later…

Outline
1. Introduction & Background

2. Inconsistency Measures

3. Complexity of Calculation

4. Probabilistic Database Viewpoint

5. Responsibility Attribution

6. Concluding Remarks

we are here

Noisy Data as a Noisy Channel
The Probabilistic Unclean Data (PUD) model [DeSa-Ilyas-K-Ré-Rekatsinas-18]

• Examples:
§ HoloClean [Rekatsinas-Chu-Ilyas-Ré-17]
§ HoloDetect [Heidari-McGrath-Ilyas-Rekatsinas-19]

Intension
Probabilistic

Data Generator

Realization
Probabilistic

Noise Generator

𝐷

𝐷′

PUD Example 1: Update Repairs

• Uniform, i.i.d. tuple
generation

• Markov logic (factors) for
weak constraints

Randomly change
cell values

Intention
Probabilistic

Data Generator

Realization
Probabilistic

Noise Generator

person birthCity birthCountry
Douglas LA USA
Douglas Tampa USA

Khan Ghajar Lebanon
Khan Ghajar Israel

birthCity →	birthCountryperson	→	birthCity-50
-5

-50

-5

Pr(𝐷′) ~ exp(Σ penatlies(𝐷′))

Intention
Probabilistic

Data Generator

Realization
Probabilistic

Noise Generator

person birthCity birthCountry
Douglas LA USA
Douglas Tampa USA

Khan Ghajar Lebanon
Khan Rajar Israel

𝐷′

𝐷

Markov Logic:

Weak constraints

PUD Example 2: Subset Repairs

Intention
Probabilistic

Data Generator

Realization
Probabilistic

Noise Generator

Randomly add
new tuples

• Uniform, i.i.d. tuple
generation

• Markov logic (factors) for
weak constraints

person birthCity birthCountry
Douglas LA USA
Douglas Tampa USA

Khan Ghajar Lebanon
Khan Ghajar Israel
Khan NYC USA

-50

-50
-5

Pr(𝐷′) ~ exp(Σ penatlies(𝐷′))

Douglas NYC NY

Khan Ghajar Syria

Intention
Probabilistic

Data Generator

Realization
Probabilistic

Noise Generator

𝐷′

𝐷

birthCity →	birthCountryperson	→	birthCity-50
-5

Fundamental Problems
Problem Deterministic Variant

Most Likely Intent Repair generation

Prob. Query Answering Consistent Query Answering,
repair counting

Parameter Learning

Intension
Probabilistic

Data Generator

Realization
Probabilistic

Noise Generator

D

argmax#(Pr(𝐷′)

Pr(𝑎 ∈ 𝑄(𝐷′))

𝐷′ Generalizes several
studied problems ⟶

Probabilistic Duplicates [Andritsos-Fuxman-Miller-06]
person	⟶	birthCity,	birthState

person birthCity birthState p
Cullen Douglas LA CA 0.6

Cullen Douglas Tampa FL 0.4

Marion Jones LA CA 1.0

Irene Tedrow NYC NY 0.3

Irene Tedrow LA FL 0.4

Irene Tedrow Hollywood FL 0.2

Irene Tedrow Hollywood CA 0.1

Later termed Block-Independent Databases (BID) [Dalvi-Ré-Suciu-11]

disjoint

disjoint

disjoint
indep.

[Gribkoff-VanDenBroeck-Suciu-14]

Beyond Key Constraints?

person birthCity birthState
Cullen Douglas LA CA
Cullen Douglas Tampa FL
Marion Jones LA CA
Irene Tedrow NYC NY
Irene Tedrow LA FL
Irene Tedrow Hollywood FL
Irene Tedrow Hollywood CA

person	⟶	birthCity
birthCity⟶	birthState

Approach 1: Repair as Markov Chain
Idea: Iteratively select
violations and fix, randomly
• [Beskales-Ilyas-Golab-10]
• [Yakout+13] (SCARE system)
• [Calautti-Libkin-Pieris-18]

Approach 2: TID Conditioning

[deRougemont-95] [Grädel-Gurevich-Hirsch-98] [Dalvi-Suciu-04]

[Gribkoff-VanDenBroeck-Suciu-14]

person city state p
Cullen LA CA 0.6

Cullen Tampa FL 0.4

Marion LA CA 1.0

Irene NYC NY 0.3

person qualification p
Cullen 9 0.3

Cullen 5 0.7

Marion 8 1.0

Irene 9 0.8

Pr(𝐷′) = 9
!∈#$

𝑝 𝑡 × 9
!∉#$

(1 − 𝑝 𝑡)

Tuple-Independent Database

[Gribkoff-VanDenBroeck-Suciu-14]

Constrained TID

person birthCity birthState p
Cullen Douglas LA CA 0.6

Cullen Douglas Tampa FL 0.7

Marion Jones LA CA 0.9

Irene Tedrow NYC NY 0.6

Irene Tedrow LA FL 0.9

Irene Tedrow Hollywood FL 0.5

Irene Tedrow Hollywood CA 0.8

person	⟶	birthCity
birthCity⟶	birthState

p(𝐷′) = Pr(𝐷′ | 𝐶)
Computational problem: find a most probable 𝐷′ (MPD)

[Gribkoff-VanDenBroeck-Suciu-14]

MPD

person birthCity birthState p
Cullen Douglas LA CA 0.6

Cullen Douglas Tampa FL 0.7

Marion Jones LA CA 0.9

Irene Tedrow NYC NY 0.6

Irene Tedrow LA FL 0.9

Irene Tedrow Hollywood FL 0.5

Irene Tedrow Hollywood CA 0.8

person	⟶	birthCity
birthCity⟶	birthState

factor
1-0.6
0.7
0.9
1-0.6
1-0.9
1-0.5
0.8

9
!∈#$

𝑝 𝑡 × 9
!∉#$

(1 − 𝑝 𝑡)max()
Can compute efficiently?

consistent 𝐷′

MPD Complexity

• [Gribkoff-VanDenBroeck-Suciu-14] studied the
computation of an MPD in the case of FDs

• They covered the case of unary FDs (single-
attribute on the lhs)
– With a gap remaining

• They left open the case of a general set of FDs
(and the remainder of the unary case)

• Interestingly, the open problem has been
resolved in a different context
– … that we have seen already!

THEOREM [Livshits-K-Roy-18]

Fix any set of FDs. The following are equivalent (under
standard complexity assumptions):

1. An MPD can be found in poly-time
2. The measure repair_cost Σ,R can be computed (and

a cardinality repair can be found) in poly-time

COROLLARY

Fix any set of FDs. The following are equivalent (under
standard complexity assumptions):

1. An MPD can be found in poly-time
2. The FD set can be simplified until emptied

according to the simplification process of Livshits+

Hardness of Constraints

• Recall that we started with the problem of finding
a most likely repair of a PUD

• The previous results cover the case where
constraints are hard constraints

• What about soft constraints?
• Still largely open, yet considerable progress

– [Carmeli-Grohe-K-Livshits-Tibi-21]

MPD for Weak Constraints

9
!∈#$

𝑝 𝑡 × 9
!∉#$

(1 − 𝑝 𝑡)max()
consistent 𝐷′

MPD:

f
!∈#(

𝑤 𝑡 × f
FD -

f
violations
!,!% ⊆ #(

1
cost(𝜑)max()

subset 𝐷′

Soft
constraints:

Cullen ACM CA

Cullen IEEE FL

Marion ACM CA

Irene IEEE NY

Irene ACM FL

Irene LNCS FL

person	⟶	company

company	⟶	state

Example: “Liberal” Matching

Algorithm via minimum-cost maximum flow
[Carmeli-Grohe-K-Livshits-Tibi-21]

• We need to select a subset of
the relationships

• We pay a cost 𝑐(𝑒) for denying
each relationship 𝑒

• We pay a cost 𝑐1 for each

• We pay a cost 𝑐2 for each

• Goal: least-cost liberal matching

𝑐(𝑒9)

𝑐(𝑒
4)

Algorithm: Network Flow with Costs

• Min-cost max-flow: Given a network with capacities and costs on
edges, find a maximal source-to-sink flow with a minimal cost

• Solvable in polynomial time, including the integral variant (capacities
and flow are all integers) [Ahuja-Magnanti-Orlin-93]

Outline
1. Introduction & Background

2. Inconsistency Measures

3. Complexity of Calculation

4. Probabilistic Database Viewpoint

5. Responsibility Attribution

6. Concluding Remarks

we are here

Usage of Inconsistency Measures

Progress indication
for data repairing

processes

Attribution of
responsibility to

inconsistency

Notions of soft
(weak/approx)

constraints

Background: Explaining Query Answers

ShapGraph, SIGMOD-22 Demo
[Davidson-Deutch-Frost-K-Koren-Monet-22]

• Which DB tuples explain a query answer?
Quantify each tuple’s responsibility

• Various past proposals
– Counterfactual analysis [Meliou+10] [Freire+15]

§ Minimal change for the tuple to matter [Chockler-Halpern04]
– Causal effect [Salimi+16]

§ Based on probabilistic databases
– Shapley value [Livshits+20] (next)

• If the query asks about inconsistency, we get to
attribute a responsibility to each tuple
– In turn, can be used to rank tuples for inspection / fix

• This query can be any inconsistency measure

Background: Explaining Query Answers

The Shapley Value
• A widely known profit-sharing formula in

cooperative game theory by Shapley
– [L.S. Shapley: A value for n-person games, 1953] [Roth-88]

• Theoretical justification: unique modulo
rationality desiderata

• Applied in various areas:
– Pollution responsibility in environmental management
– Influence measurement in social network analysis
– Identifying candidate autism genes
– Bargaining foundations in economics
– Takeover corporate rights in law
– Explanations (local) in machine learning
– Explanations in databases

Set A of players

Shapley Definition

Wealth function 𝜈:P 𝐴 ⟶ ℝ

3 7 12 42
⋯

Shapley 𝐴, 𝑣, 𝑎 = d
*⊆,∖{/}

𝐵 ! 𝐴 − 𝐵 − 1 !
𝐴 !

𝑣 𝐵 ∪ 𝑎 − 𝑣 𝐵

How to share the wealth among the players?

+5

Set A of players

Shapley Explained

3 5 5 12 17

Shapley 𝐴, 𝑣, 𝑎 = d
*⊆,∖{/}

𝐵 ! 𝐴 − 𝐵 − 1 !
𝐴 !

𝑣 𝐵 ∪ 𝑎 − 𝑣 𝐵

Shapley value: expected delta

Wealth v:# A → ℝ

3

7

12

42

Set A of players

Instatiations of the Shapley Value

ML

How to share wealth among players?

PredictionFeatures
SHAP

[Lundberg-Lee-17]

Tuples AnswerDB
Query

[Deutch+22]
[Livshits+20]

Inconsistency MeasureTuples
[Livshits-K-21]

[Hunter-Konieczn-18]

Problem: Shapley Calculation

Compute a Shapley Value for Inconsistency

Params: Relation schema S ; set Σ of constraints ;
inconsistency measure 𝐼

Input: Relation 𝐷 over S ; tuple 𝑡 of 𝐷

Goal: Compute the Shapley value of 𝑡 under 𝐼(Σ, 𝐷)

Example 1: Number of Violations

Shapley 𝐷, 𝑡 = d
12%

|4|5"

𝑐1 0 𝔼[#violations of 𝑡 w/ random 𝑘 facts]

= d
12%

|4|5"

𝑐1 0 𝔼[#facts from 𝐹 in a random 𝑘−subset]

Easily computable
coefficients

Facts in conflict with 𝑡

Simple combinatorics

Example 2: Number of Problematic Tuples
Shapley 𝐷, 𝑡

= d
12%

|4|5"

𝑐1 0 (𝔼[#problematic in random 𝑘 facts and 𝑡]

−𝔼[#problematic in random 𝑘 facts excluding 𝑡])

Easily computable
coefficients

𝔼[#problematic among random 𝑘 facts]

⋮

= 𝔼[∑6∈4 1 𝑠 is selected together with some conqlict 𝑠′].

= ∑6∈4 Pr(𝑠 is selected together with some conqlict 𝑠!)

= ∑6∈4 Pr(𝑠 and at least one of 𝐹6 are selected)
Facts in
conflict
with 𝑠

Linearity of
expectation

Simple combinatorics

Complexity Picture

Measure lhs chain No lhs chain,
tractable rep_cost other

drastic PTIME FP#/-complete
#repairs PTIME FP#/-complete

repair_cost PTIME Open NP-hard
#violations PTIME

#problematic PTIME

Discussed Discussed

Next

Hardness Technique 1: Measure Hardness

• Consider the cooperative game with the set 𝐴 of players
and utility 𝑣

• A general property of the Shapley values is that the sum
of values is equal to the overall utility:

∑/∈0 Shapley 𝐴, 𝑣, 𝑎 = 𝑣 𝐴

• Hence, from the Shapley values of facts we can compute
the inconsistency measure over the whole database

• Conclusion 1: If Σ is not an lhs-chain (u.t.e.), then Shapley
value is #P-hard for #repairs

• Conclusion 2: If Σ is not emptied by the simplification of
Livshits+, then Shapley value is NP-hard for repair_cost

Measures: #repairs , repair_cost

Complexity Picture

Measure lhs chain No lhs chain,
tractable rep_cost other

drastic PTIME FP#/-complete
#repairs PTIME FP#/-complete

repair_cost PTIME Open NP-hard
#violations PTIME

#problematic PTIME

Discussed Discussed

Next

Discussed

Hardness Technique 2: Linear Algebra (1)
Measure: drastic (1 / 0)

𝐴 𝐵
a 1

b 2

a 2

a

2b

1

Σ = {𝐴 → 𝐵 , 𝐵 → 𝐴}

Consistency =
being a partial
matching

Shapley 𝐷& , 𝑡 ≈ ∑'()# |𝑀 𝑔, 𝑘 |] 𝑟] 𝑘 + 1 !] 𝑚 + 𝑟 − 𝑘 − 1 !

Partial
matchings

𝑡 𝑡 𝑡

Hardness Technique 2: Linear Algebra (2)
Measure: drastic (1 / 0)

Non-singular [Bacher-02]

We can compute #partial-matchings
of a bipartite graph… #P-complete!

Assume PTime

Shapley 𝐷& , 𝑡 ≈ ∑'()# |𝑀 𝑔, 𝑘 |] 𝑟] 𝑘 + 1 !] 𝑚 + 𝑟 − 𝑘 − 1 !

|𝑀 𝑔, 0 |
|𝑀 𝑔, 1 |

⋮
|𝑀 𝑔,𝑚 |

Shapley 𝐷", 𝑡
Shapley 𝐷#, 𝑡

⋮
Shapley 𝐷89", 𝑡

=

Hardness Technique 3: Fact-Wise Reduction

• We showed hardness for {𝐴 → 𝐵 ,𝐵 → 𝐴}
• We need to show hardness for every set of FDs

that is not an lhs-chain
• But this, we get for free, since…
• For the hardness of #repairs, we already showed

fact-wise reductions from {𝐴 → 𝐵 ,𝐵 → 𝐴}

Measure: drastic (1 / 0)

+ Approximation

Measure lhs chain No lhs chain,
tractable rep_cost other

drastic
PTIME

FP#/-complete
approx FPRAS

#repairs
PTIME

FP#/-complete
approx Open

repair_cost
PTIME

Open NP-hard
approx FPRAS No FPRAS

#violations PTIME
#problematic PTIME Would imply an FPRAS

for #MIS in a bipartite
graph – long standing
open problem

Approximation Algorithms

• In the case of drastic and cardinality, a tuple can
increase the measure by either 1 or 0
– In the sampling-w/o-replacement trial

• Hence, the Shapley value of a fact is the
probability that it increases the measure

• An additive approx. is straightforward: average
over multiple trials

• The additive approx. gives a multiplicative
approx. via the gap property that holds here:

If Shapley is nonzero, it is at least 1/poly

Measures: drastic ; cardinality

Explanation of Cleaning Algorithms

• Deutch et al. studied explanations for the actions
of black-box tools for data cleaning
– [Deutch-Frost-Gilad-Sheffer-CIKM21]

• Specifically,
– Why has this cell changed?
– Which components are most responsible to

the the cell value produced by the cleaner?
• Two types of components:

– Constraints (DCs)
– Cell values (non-null)

Wealth v:# A → ℝ

3

7

12

42

Set A of players

Instatiations of the Shapley Value

ML PredictionFeatures

Tuples AnswerDB
Query

Inconsistency MeasureTuples

Cleaning
[Deutch+21]

Cleaner
ActionConstraints

Cleaner
ActionNonnull cells

Outline
1. Introduction & Background

2. Inconsistency Measures

3. Complexity of Calculation

4. Probabilistic Database Viewpoint

5. Responsibility Attribution

6. Concluding Remarks we are here

Summary & Conclusions

• Quantitative measurement of inconsistency arise in
various situations in database management
– Classic/recent, implicit/explicit

• We discussed 3 use cases: notions of soft constraints,
progress indication, attribution of responsibility to noise

• Interesting computational challenges, good understanding
of complexity in limited settings
– Functional dependencies (sometimes denial constraints) and

tuples deletions

• Connections to probabilistic databases
– Fundamental problems coincide, unified models studied

Some Open Problems (1)

• Empirical user studies on how measurements
help quality management / data prep
– “Data preparation accounts for about 80% of the work

of data scientists” - Forbes

• Repairing model – measures heavily based on
tuple deletion
– Insufficient theory about cell updates
– For example, the complexity of repair-cost?
– What would be good measures?

Some Open Problems (2)

• Beyond anti-monotonic – what about foreign
keys? Inclusion constraints?
– Then, we should also consider tuple addition

• Shapley values – we lack approximation
algorithms and practical techniques
– Approximation for Shapley value for repair-cost
– Knowledge compilation? (e.g., via provenance tracking

using ProvSQL as in DB queries [Deutch+22])

• Soft constraints – we know the complexity of very
few cases, basic problems still open

Main References (1)
• Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin: Network flows - theory,

algorithms and applications. Prentice Hall 1993, ISBN 978-0-13-617549-0, pp. I-XV,
1-846

• Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki: Consistent Query Answers in
Inconsistent Databases. PODS 1999: 68-79

• Leopoldo E. Bertossi: Measuring and Computing Database Inconsistency via Repairs.
SUM 2018: 368-372

• Marco Calautti, Georg Gottlob, Andreas Pieris: Non-Uniformly Terminating Chase: Size
and Complexity. PODS 2022: 369-378

• Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, Theodoros
Rekatsinas: A Formal Framework for Probabilistic Unclean Databases. ICDT 2019: 6:1-
6:18

• Daniel Deutch, Nave Frost, Amir Gilad, Oren Sheffer: Explanations for Data Repair
Through Shapley Values. CIKM 2021: 362-371

• Daniel Deutch, Nave Frost, Benny Kimelfeld, Mikaël Monet: Computing the Shapley
Value of Facts in Query Answering. SIGMOD Conference 2022: 1570-1583

• Wenfei Fan, Floris Geerts: Foundations of Data Quality Management. Synthesis
Lectures on Data Management, Morgan & Claypool Publishers 2012

• John Grant, Anthony Hunter: Measuring the Good and the Bad in Inconsistent
Information. IJCAI 2011: 2632-2637

• Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. 2014. The Most Probable
Database Problem. In BUDA.

• Jyrki Kivinen, Heikki Mannila: Approximate Inference of Functional Dependencies from
Relations. Theor. Comput. Sci. 149(1): 129-149 (1995)

• Ester Livshits, Alireza Heidari, Ihab F. Ilyas, Benny Kimelfeld: Approximate Denial
Constraints. Proc. VLDB Endow. 13(10): 1682-1695 (2020)

• Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, Moshe Sebag: The Shapley
Value of Tuples in Query Answering. Log. Methods Comput. Sci. 17(3) (2021)

• Ester Livshits, Benny Kimelfeld: The Shapley Value of Inconsistency Measures for
Functional Dependencies. ICDT 2021: 15:1-15:19

• Ester Livshits, Benny Kimelfeld, Sudeepa Roy: Computing Optimal Repairs for
Functional Dependencies. ACM Trans. Database Syst. 45(1): 4:1-4:46 (2020)

• Ester Livshits, Benny Kimelfeld, Jef Wijsen: Counting subset repairs with functional
dependencies. J. Comput. Syst. Sci. 117: 154-164 (2021)

Main References (2)

Main References (3)
• Ester Livshits, Rina Kochirgan, Segev Tsur, Ihab F. Ilyas, Benny Kimelfeld, Sudeepa

Roy: Properties of Inconsistency Measures for Databases. SIGMOD Conference 2021:
1182-1194

• Dongjing Miao, Zhipeng Cai, Jianzhong Li, Xiangyu Gao, Xianmin Liu: The Computation
of Optimal Subset Repairs. Proc. VLDB Endow. 13(11): 2061-2074 (2020)

• Roth, A. E. 1988. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge
University Press.

• Shapley, L. S. 1953. A value for n-person games. Contributions to the Theory of
Games 2(28): 307–317.

