

Quantitative Reasoning about **Constraint Violations**

Benny Kimelfeld

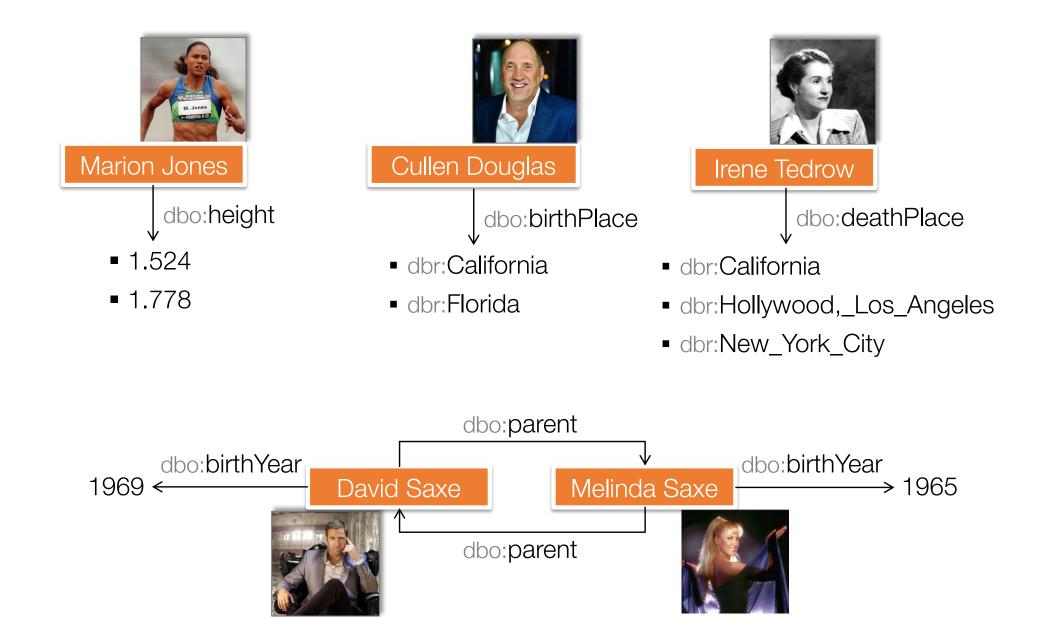
Technion Data & Knowledge Lab tdk.cs.technion.ac.il

EDBT-INTENDED Summer School 2022 JULY 4-9, 2022, Bordeaux, France

Outline

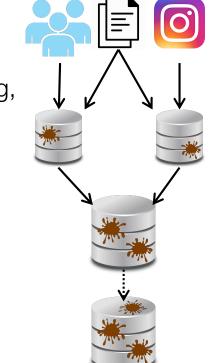
- 1. Introduction & Background
- 2. Inconsistency Measures
- 3. Complexity of Calculation
- 4. Probabilistic Database Viewpoint
- 5. Responsibility Attribution
- 6. Concluding Remarks

Examples of Inconsistency (DBPedia)



Inconsistency

- "Inconsistent data": integrity constraints violated
- Why so?
 - Imprecise data sources
 - Crowd, Web pages, social encyclopedias, sensors, …
 - Imprecise data generation
 - Natural-language processing, sensor/signal processing, image recognition, ...
 - Conflicts in data integration
 - Crowd + enterprise data + KB + Web + ...
 - Data staleness
 - Entities change address, status, ...
 - And so on ...



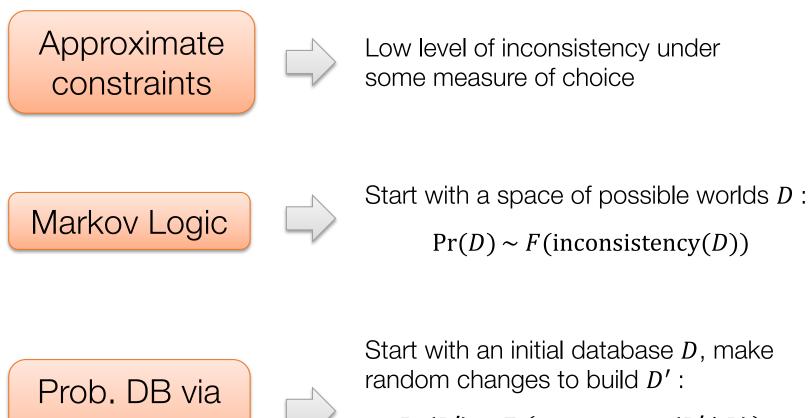
To what extent are constraints being violated?

Who studies it?

- KR research: measuring the inconsistency of a KB (set of logical statements)
- DB research: constraint mining, data cleaning, probabilistic databases
- Al/SRL research: Markov Logic Networks, Probabilisitic Soft Logic, ...

Inconsistency Measures to Soften Logic

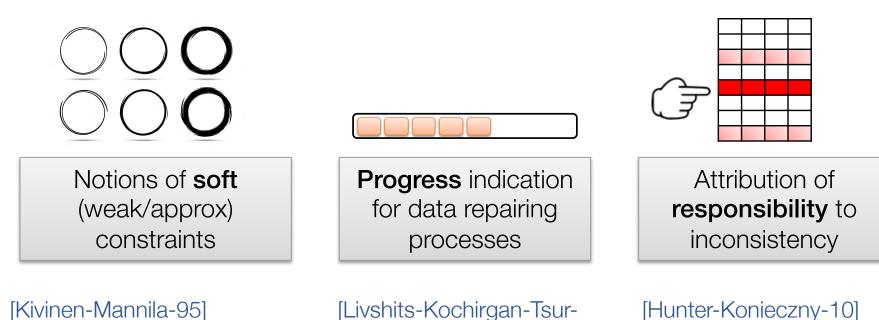
Inconsistency measures have been around, explicitly or implicitly, playing different roles



soft rules

 $Pr(D') \sim F_1(intervention(D' | D))$ $\cdot F_2(inconsistency(D'))$

Some Usage of Inconsistency Measures



[Kivinen-Iviannia-95] [Sen-Deshpande-Getoor-09] [Chu-Ilyas-Papotti-13] [Rekatsinas-Chu-Ilyas-Ré-17] [Kruse-Naumann-18] [Rammelaere-Geerts-18

. . .

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-21] [Hunter-Konieczny-10] [Yun-Vesic-Croitoru-Bisquert-18] [Deutch-Frost-Gilad-Sheffer-20] [Livshits-K-21]

 $\mathbf{x}_{i} \in \mathbf{x}_{i}$

Plan for this Lecture

- Discuss inconsistency measurement from the viewpoint of the usages
- Reference past research projects with collaborators
- Focus on algorithms and complexity analysis for relevant tasks



Types of Integrity Constraints

- Key constraints

 Person(ssn,name,birthCity,birthState)
- Functional Dependencies (FDs)
 - − birthCity → birthState
 - Generally, $X \rightarrow Y$ where X and Y are sets of attributes
- Conditional FDs
 - $zip \rightarrow city$ whenever country="France"
- Denial constraints
 - not[Parent(x,y) & Parent(y,x)] (forbidden patterns)
- Referential (foreign-key) constraints
 - $Parent(x,y) \rightarrow Person(x) \& Person(y)$

Cf. [Fan-Geerts-12] for a comprehensive study of constraints in data quality management

WORGAN &CLAYFOOL FUBLISHERS Foundations of Data Quality Management Wenfei Fan Floris Geerts SINTHESIS LECTURES ON DATA MANGEMENT

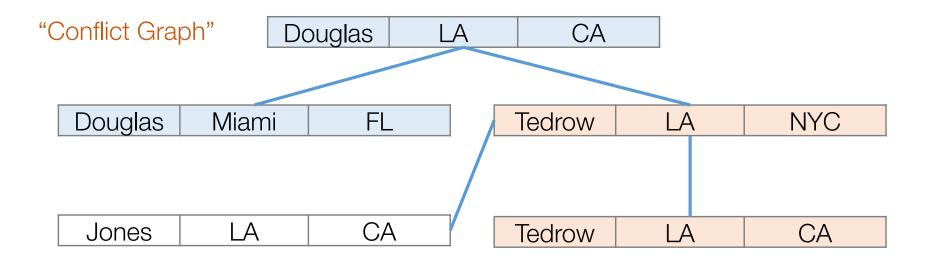
Anti-monotonic constraints: consistency preserved by subsets

Example of Functional Dependencies

$person \rightarrow birthCity$

birthCity → birthState

X	person	birthCity	birthState	
	Douglas	LA	CA	X
	Douglas	Miami	FL	
X	Tedrow	LA	CA	
	Tedrow	LA	NYC	
	Jones	LA	CA	×



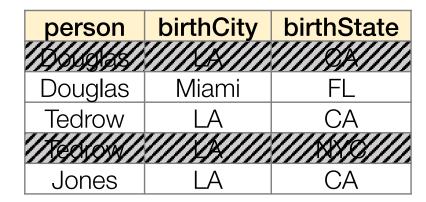
- Inconsistent database violates constraints
 - Representation: (Σ, D) where the database D violates the set Σ of constraints
- **Repair**: a consistent variant via a *legitimate fix*
 - Subset repairs: set-max consistent subset
 - Cardinality repairs: cardinality-max consistent subset
 - More: update repairs (value updates), symmetricdifference repairs (tuple insertion/deletion), ...
 - [Arenas-Bertossi-Chomicki-99]

Example: Subset/Cardinality Repairs

$person \rightarrow birthCity$

birthCity → birthState

person	birthCity	birthState
Douglas	LA	CA
Douglas	Miami	FL
Tedrow	LA	CA
Tedrow	LA	NYC
Jones	LA	CA



Cardinality repair

Classic Repair Problems

- Repair checking
 - Given D and D', is D' a repair of D?
 - [Chomicki-Marcinkowski-05] [Afrati-Kolaitis-09]
- Consistent Query Answering (CQA)
 - Which query answers hold albeit inconsistency? Tuples in Q(D') for all repairs D' [Arenas+99] [Koutris-Wijsen-17]
- Repairing / Cleaning
 - Compute a (good/best) repair
 - [Bertossi+08] [Kolahi-Lakshmanan-09] [Livshits-K-Roy-18]
- Repair counting
 - For databases [Maslowski-Wijsen-14] [Livshits+21] [Calautti+22]
 - For knowledge bases [DeBona-Grant-18] [Hunter-Konieczn-18]

Outline

- 1. Introduction & Background
- 2. Inconsistency Measures

we are here

- 3. Complexity of Calculation
- 4. Probabilistic Database Viewpoint
- 5. Responsibility Attribution
- 6. Concluding Remarks

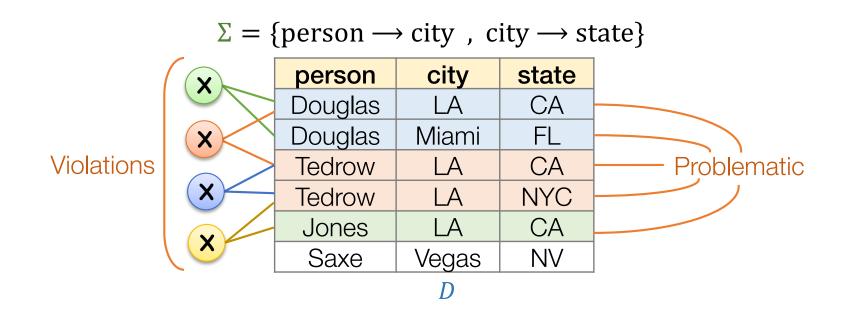
Definition: Inconsistency Measure

- Notation:
 - Σ denotes a set of integrity constraints
 - D denotes a database
- An *inconsistency measure* is a function *I* that maps each pair (Σ, D) to a non-negative number, such that *I*(Σ, D) > 0 iff D violates Σ
 - Intuitively, $I(\Sigma, D) > I(\Sigma', D')$ means that D is farther from satisfying Σ than D' from satisfying Σ'
- We focus on **anti-monotonic** Σ (e.g., FDs, DCs)

Basic Inconsistency Measures

- **Drastic**: 1 or 0 (inconsistent or consistent) – [Thimm-17] (Later: makes sense in responsibility attribution)
- **#violations** (i.e., <u>set-min</u> inconsistent subsets)
 - [Kivinen-Mannila-95] [Hunter-Konieczny-08] ("MI Shapley Inconsistency")
- **#problematic** tuples (i.e., tuples in violations)
 - [Kivinen-Mannila-95] [Grant-Hunter-11]
- #repairs: number of maximal consistent subsets
 [Grant-Hunter-11]
- **repair_cost:** minimal #tuples to delete to attain consistency (**cardinality repair**)
 - [Huhtala+98] [Kivinen-Mannila-95] [Grant-Hunter-13] [Bertossi-18] [Rammelaere-Geerts-18] (constraint "confidence")

Example 1



#violations(Σ , D) = 4 #problematic(Σ , D) = 5 drastic(Σ , D) = 1 #repairs $(\Sigma, D) = 3$ repair_cost(Σ , D) = 2

Repairs										
person	city	state		person	city	state		person	city	state
Douglas	LA	CA		Douglas	Miami	FL		Douglas	Miami	FL
Tedrow	LA	CA		Tedrow	LA	CA	1	Tedrow	LA	NYC
Jones	LA	CA		Jones	LA	CA]	Saxe	Vegas	NV
Saxe	Vegas	NV		Saxe	Vegas	NV	1			

$\Sigma = \{ \text{person} \rightarrow \text{city} , \text{city} \rightarrow \text{state} \}$

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	person city state			person	city	state	
12 12 \vdots \vdots \vdots \vdots p_{50} LACADouglasLANYdrastic(Σ, D_1) = 1drastic(Σ, D_2) = 1#violations(Σ, D_1) = 50#violations(Σ, D_2) = 1#problematic(Σ, D_1) = 51#problematic(Σ, D_2) = 2#repairs(Σ, D_1) = 2#repairs(Σ, D_2) = 2	p ₁ LA CA			p_1	LA	CA	
\vdots \vdots \vdots \vdots \vdots \vdots \vdots p_{50} LACA p_{50} UticaNYDouglasLANYDouglasLANYdrastic(Σ, D_1) = 1drastic(Σ, D_2) = 1drastic(Σ, D_2) = 1#violations(Σ, D_1) = 50#violations(Σ, D_2) = 1#problematic(Σ, D_1) = 51#problematic(Σ, D_2) = 2#repairs(Σ, D_1) = 2#repairs(Σ, D_2) = 2	p ₂ LA CA	50	50	p_2	Miami	FL	
TotNYDouglasLANYdrastic(Σ, D_1) = 1DouglasLA#violations(Σ, D_1) = 50#violations(Σ, D_2) = 1#problematic(Σ, D_1) = 51#problematic(Σ, D_2) = 2#repairs(Σ, D_1) = 2#repairs(Σ, D_2) = 2	: : :			•	•	•	
drastic(Σ, D_1) = 1drastic(Σ, D_2) = 1#violations(Σ, D_1) = 50#violations(Σ, D_2) = 1#problematic(Σ, D_1) = 51#problematic(Σ, D_2) = 2#repairs(Σ, D_1) = 2#repairs(Σ, D_2) = 2	p ₅₀ LA CA			p_{50}	Utica	NY	
#violations(Σ, D_1) = 50#violations(Σ, D_2) = 1#problematic(Σ, D_1) = 51#problematic(Σ, D_2) = 2#repairs(Σ, D_1) = 2#repairs(Σ, D_2) = 2	Douglas LA NY			Douglas	LA	NY	
#problematic(Σ , D_1) = 51#problematic(Σ , D_2) = 2#repairs(Σ , D_1) = 2#repairs(Σ , D_2) = 2							
	$#problematic(\Sigma, D_1) = 51$			#problem	$\operatorname{atic}(\Sigma, D_2)$) = <mark>2</mark>	
repair_cost(Σ , D_1) = 1 repair_cost(Σ , D_2) = 1	$\#$ repairs(Σ , D_1) = 2			#repairs(Σ , D_2) = 2			
	repair_cost(Σ , D_1) = 1			repair_co	$ost(\Sigma, D_2)$	= 1	

Some Concepts of Soft Constraints

- Mining approximate constraints
 - [Kivinen-Mannila-95]: #violations, #problematic, repair_cost;
 [Huhtala+98]: repair_cost; DCFiner [Pena-Almeida-Naumann-19]:
 #violations; [Livshits-Heidari-Ilyas-K-20] abstraction
- Markov Logic Networks [Richardson-Domingos-06]
 - Factor for every violation/satisfaction (weighted #violations)
 - Symmetric every possible tuple is a variable
 - Instances: DeepDive [DeSa+16], Pr. Datalog+/- [Gottlob+11]
 - Similar concept: PrDB [Sen-Deshpande-Getoor-09]
- Soft-key constraints [Jha-Rastogi-Suciu-08]
 - Factor for every key violation of a specified size
 - Probabilistic graphical model similar to MLN (factor for each violation/satisfaction)
- Approximate multivalued dependencies (MVD)
 - Conditional entropy as a measure of satisfaction [Kenig-Suciu-20]

Postulates for Inconsistency Measures

- Goodness properties (postulates) of inconsistency measures studied by the KR community
 - [Hunter-Konieczny-08] [Grant-Hunter-11] [Thimm-17] [Grant-Parisi-19] …
 - Different focus from databases
 - KB = set of logical statements
 - Postulates mainly talk about how changes in the KB affect the measure
- We studied properties desired for *progress indication* in data repairing

The Basic Measures for Repairing Progress

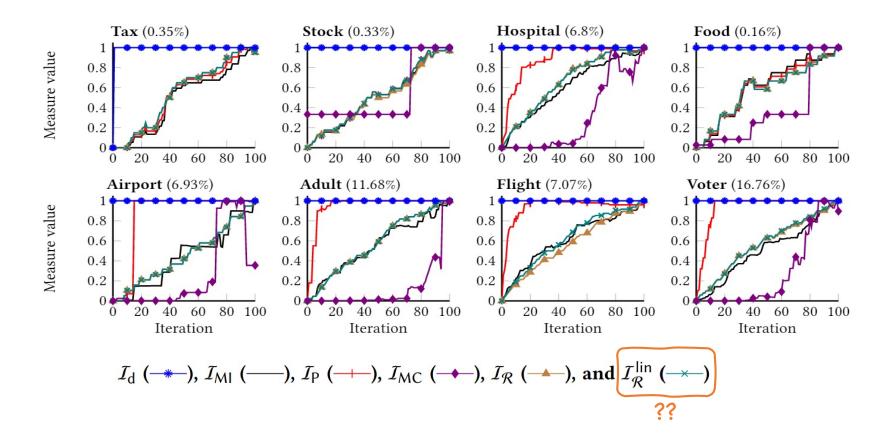
[Luo-Naughton-Ellmann-Watzke-04]

	enial constraints / fu	Inctional dependen	cies
	Monotonicity	Continuity	Progression
Drastic	\checkmark	×	×
#violations	√/x	×	\checkmark
#problematic	√/x	×	\checkmark
#repairs	×	\checkmark	×
repair_cost	\checkmark	\checkmark	\checkmark

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

[Grant-Parisi-19]

Experiments



[[]Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

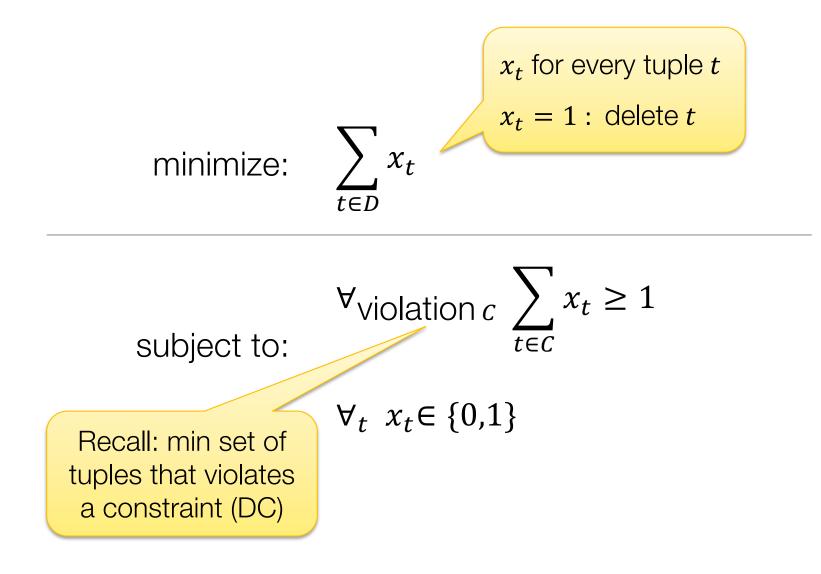
	Monotonicity	Continuity	Progression
Drastic	\checkmark	×	×
#violations	√/×	×	\checkmark
#problematic	√/ ×	×	\checkmark
#repairs	×	\checkmark	×
repair_cost	\checkmark	\checkmark	\checkmark

NP-hard for DCs [Lopatenko-Bertossi-07] ; even FDs [Livshits-K-Roy-18]

Tractable measure with all 3?

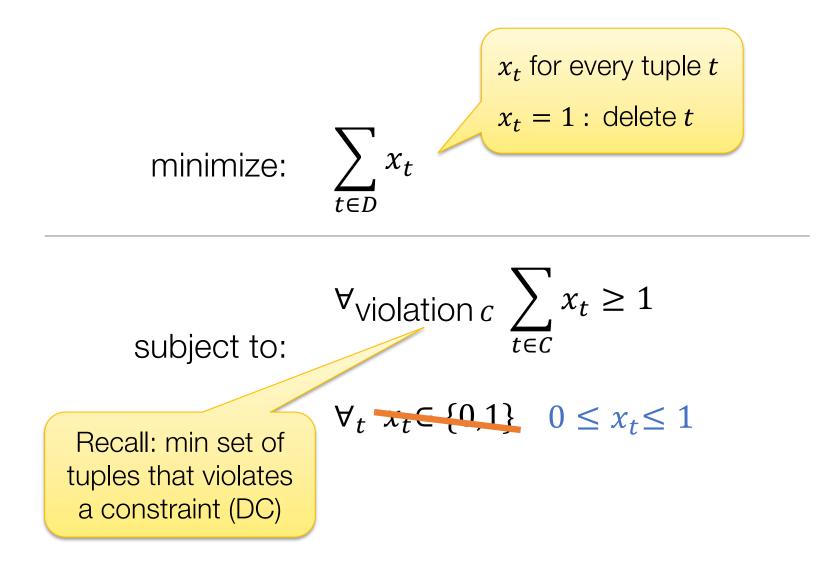
[[]Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

Repair-Cost as an ILP



[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

Linear Relaxation



[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

	Monotonicity	Continuity	Progression
Drastic	\checkmark	×	×
#violations	√ / x	×	\checkmark
#problematic	√ / x	×	\checkmark
#repairs	×	\checkmark	×
repair_cost	\checkmark	\checkmark	\checkmark
frac_cost	\checkmark	\checkmark	\checkmark

Tractable recent

Tractable measure with all 3?

[[]Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]

Outline

- 1. Introduction & Background
- 2. Inconsistency Measures
- 3. Complexity of Calculation

we are here

- 4. Probabilistic Database Viewpoint
- **Responsibility Attribution** 5.
- 6. Concluding Remarks

Complexity Analysis

- We now study the complexity of computing the basic measures
- Restrictions:
 - Functional dependencies
 - Some results apply to denial constraints... and to any antimonotonic constraints where we can materialize all (minimal) violations
 - Coarse-grained complexity (exptime vs. ptime)

Basic Inconsistency Measures

- Drastic: 1 or 0 (inconsistent or consistent)
 Thimm-17] Polynomial time (basic SQL)
 - himm-1/] Polynomial time (basic SQL)
- #violations (i.e., <u>set-min</u> inconsistent subsets)
 - [Kivinen-Mannila-95] [Hunter-Konieczny-08] ("MI Shapley Inconsistency")
 Polynomial time (basic SQL)
- #problematic tuples (i.e., tuples in violations)
 - [Kivinen-Mannila-95] [Grant-Hunter-11] Polynomial time (basic SQL)
- **#repairs**: number of maximal consistent subsets
 - [Grant-Hunter-11] Next
- repair_cost: minimal #tuples to delete to attain consistency (cardinality repair) Next
 - [Huhtala+98] [Kivinen-Mannila-95] [Grant-Hunter-13] [Bertossi-18] [Rammelaere-Geerts-18] (constraint "confidence")

Studied Computational Problems

Problem 1:	Compute a	Cardinality	Repair	(repair_	cost)
------------	-----------	-------------	--------	----------	-------

Input: Relation **D** over **S**

Goal: Find a smallest $E \subseteq D$ s.t. $D \setminus E$ satisfies Σ

Problem 2: Repair Counting (#repairs)

Set-max consistent subsets **Params:** Relation schema S; set Σ of constraints

Input: Relation D over S

Goal: Compute the number of repairs of **D** w.r.t. Σ

Greatest consistent subset

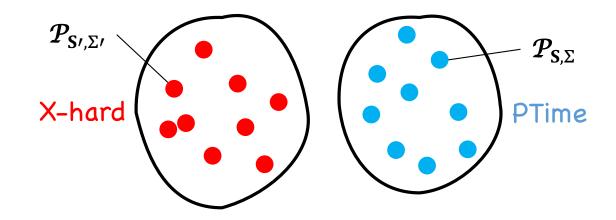
Data Complexity

- Typically, the problems we consider involve:
 - A database *D* (typically one relation)
 - A set Σ of constraints
 - Both D and Σ are over a relational schema S
- When we analyze the complexity of problems, we adopt the conventional **data complexity** [Vardi-82]
- Hence, the input consists of only the database *D*; everything else (e.g., S and Σ) is fixed
 - Treated as *parameters*
- Hence, every **S** and **\Sigma** give rise to a separate computational problem $\mathcal{P}_{\mathbf{S}, \boldsymbol{\Sigma}}$
- Possible that one $\mathcal{P}_{\mathbf{S},\Sigma}$ is tractable & other $\mathcal{P}_{\mathbf{S}',\Sigma'}$ is hard

Classifications (Dichotomies)

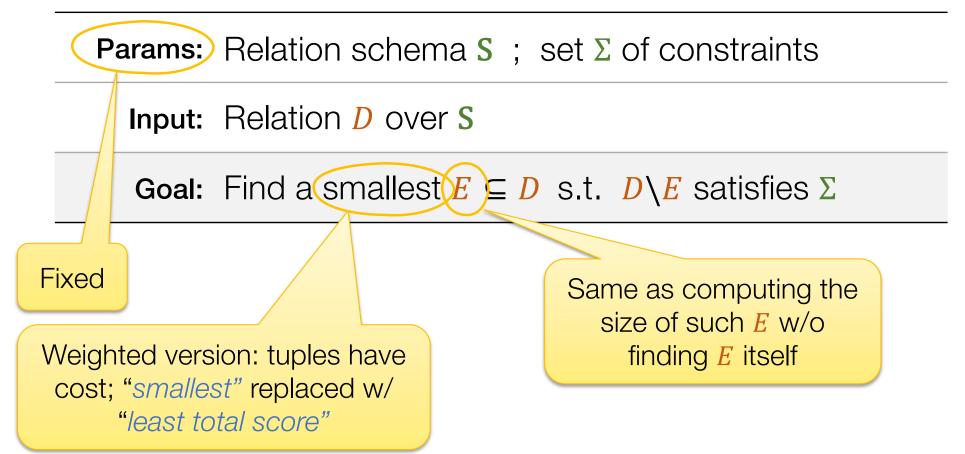
- In our case, every set of functional dependencies can have a different complexity
- Hence, we aim for complete characterizations that will determine the complexity of **every** set of functional dependencies

- A.k.a. dichotomy results or meta-theorems



Problem 1: Cardinality Repair

Compute a Cardinality Repair (repair_cost)



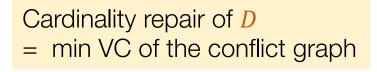
Vertex Cover with Structure

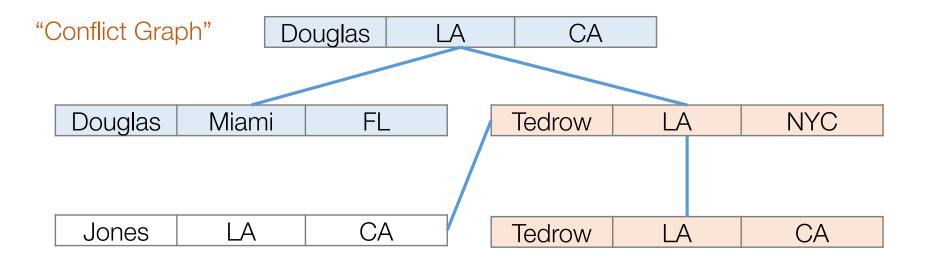
$person \rightarrow birthCity$

$birthCity \rightarrow birthState$

person	birthCity	birthState
Douglas	LA	CA
Douglas	Miami	FL
Tedrow	LA	CA
Tedrow	LA	NYC
Jones	LA	CA

Note: While minimum VC is NPhard, the conflict graphs are **not** general graphs; they are special graphs defined by relations and a fixed set of FDs





$\Sigma = \{ \text{fid} \rightarrow \text{fname}, \text{fname} \rightarrow \text{fid}, \text{fid} \rightarrow \text{city}, \text{fid room} \rightarrow \text{floor} \}$

fid	fname	room	floor	city
F01	HQ	322	3	Paris
F02	HQ	122	30	Madrid
F02	HQ	122	1	Madrid
F03	Lab1	B35	3	London
F01	Lab1	B25	2	London

Simplification 1: Common lhs

$$\sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{j=1}^{k} \sum_{i=1}^{k} \sum_{j=1}^{k} \sum_{i$$

facility	room	floor	city
HQ	322	3	Paris
HQ	322	30	Madrid
HQ	122	1	Madrid
Lab1	B35	3	London

Simplification 2: Consensus

$$\sum_{i=1}^{x} \{ \emptyset \to \operatorname{city}_{i}, \operatorname{room}_{i} \to \operatorname{floor}_{i} \}$$

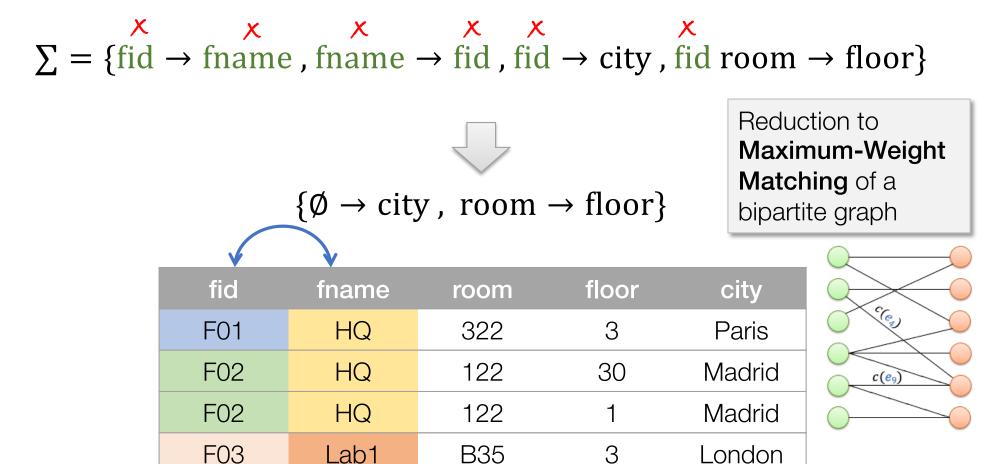
$\{room \rightarrow floor\}$

facility	room	floor	city
HQ	322	3	Paris
HQ	322	30	Madrid
HQ	122	1	Madrid

Simplification 3: Matching

F01

Lab1



B25

2

London

Repeated Simplification



The Unified Simplification Rule

Let Σ be a set of FDs, X, Y attribute sets such that:

- 1. Sets X and Y functionally determine each other i.e., $Closure_{\Sigma}(X) = Closure_{\Sigma}(Y)$
- 2. Every FD in Σ contains either X or Y in its lhs

Finding a cardinality repair under Σ reduces in polynomial time to finding a cardinality repair under $\Sigma - XY$. Example 1: X = Y (Common lhs)

$$\sum = \{ facility \rightarrow city, facility room \rightarrow floor \}$$

$$\sum \{ \emptyset \rightarrow city, room \rightarrow floor \}$$

$$X = \{ facility \}$$

$$Y = \{ facility \}$$

facility	room	floor	city
HQ	322	3	Paris
HQ	322	30	Madrid
HQ	122	1	Madrid
Lab1	B35	3	London

Example 2: $X = \emptyset$ (Consensus)

$$\sum_{i=1}^{x} \{ \emptyset \rightarrow \text{city}, \text{ room} \rightarrow \text{floor} \}$$

$$X = \emptyset$$
$$Y = {city}$$

 $\{room \rightarrow floor\}$

facility	room	floor	city
HQ	322	3	Paris

HQ	322	30	Madrid
HQ	122	1	Madrid

Example 3: General X,Y (Matching)

 $\sum_{i=1}^{x} \{ fid \rightarrow fname, fname \rightarrow fid, fid \rightarrow city, fid room \rightarrow floor \} \}$

$$\{\emptyset \rightarrow \text{city}, \text{ room} \rightarrow \text{floor}\}$$

$$X = \{\text{fname}\}$$
$$Y = \{\text{fid}\}$$

fid	fname	room	floor	city
F01	HQ	322	3	Paris
F02	HQ	122	30	Madrid
F02	HQ	122	1	Madrid
F03	Lab1	B35	3	London
F01	Lab1	B25	2	London

- Simplification rule simplifies the computation of repair_cost by eliminating attributes and dependencies
- Not an arbitrary algorithmic trick...
- It is **complete** for computing repair_cost!

THEOREM [Livshits-K-Roy-20]

Fix any set Σ of FDs. The following are equivalent (under standard complexity assumptions):

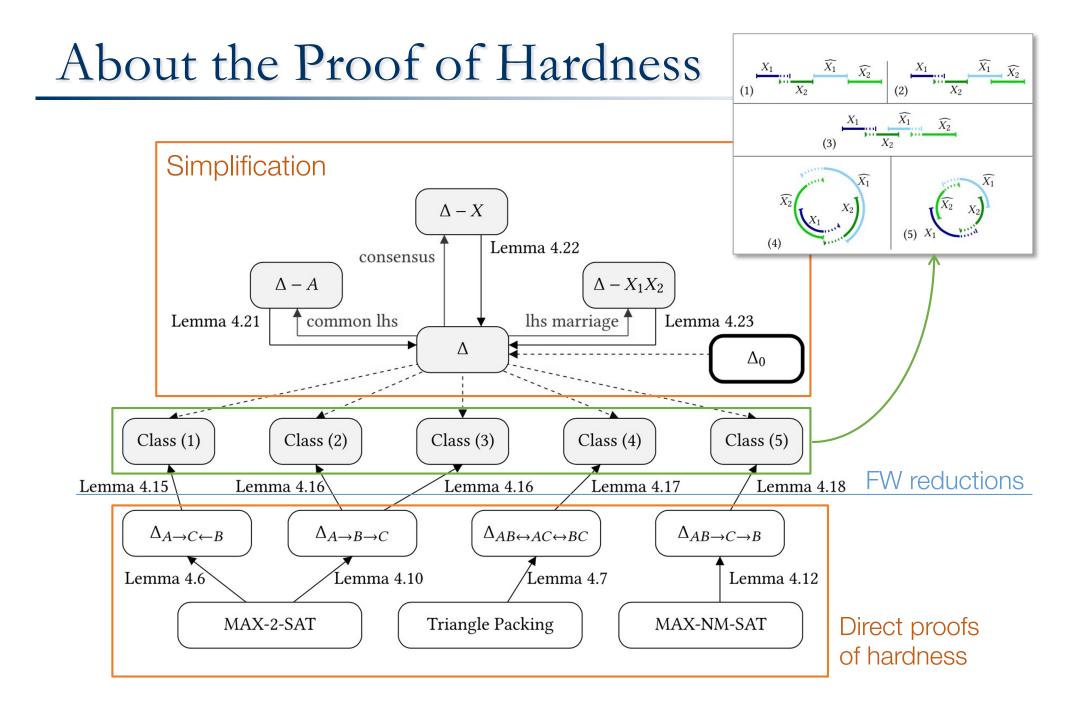
- 1. The measure repair_cost(Σ ,·) can be computed (and a cardinality repair can be found) in poly-time
- 2. The FD set $\boldsymbol{\Sigma}$ can be simplified until emptied

Proof Technique: Fact-Wise Reduction

- How do we prove hardness for *infinitely many* FD sets?
- A common approach is the **fact-wise reduction**

Let S_1 and S_2 be database schemes with the constraints Σ_1 and Σ_2 . A *fact-wise reduction* is a mapping from facts $R_1(a_1, \dots, a_n)$ over S_1 to facts $R_2(b_1, \dots, b_m)$ over S_2 that:

- Is injective (one-one)
 - Examples: $(a, b) \Rightarrow (a, a, b, b)$ $(a, b, c) \Rightarrow (b, a, b, c)$
- Preserves consistency and inconsistency
- Is computable in polynomial time
- General mechanism to translate (reduce) problems on (S_1, Σ_1) to problems on (S_2, Σ_2) ; if former hard, so latter



[Livshits-K-Roy-20]

- A 2-approx of repair-cost can be obtained easily using a 2-approx for Vertex Cover
 - Can be generalized to **denial constraints** (constant approx)
- [Miao et al.] used the dichotomy and fact-wise reductions in follow-up work on approx bounds for cardinality repair
- Improved known upper bounds for general VC in the case of conflict graphs, based on the set of FDs
- Developed optimization techniques and heuristics to establish efficient, high-quality approximations

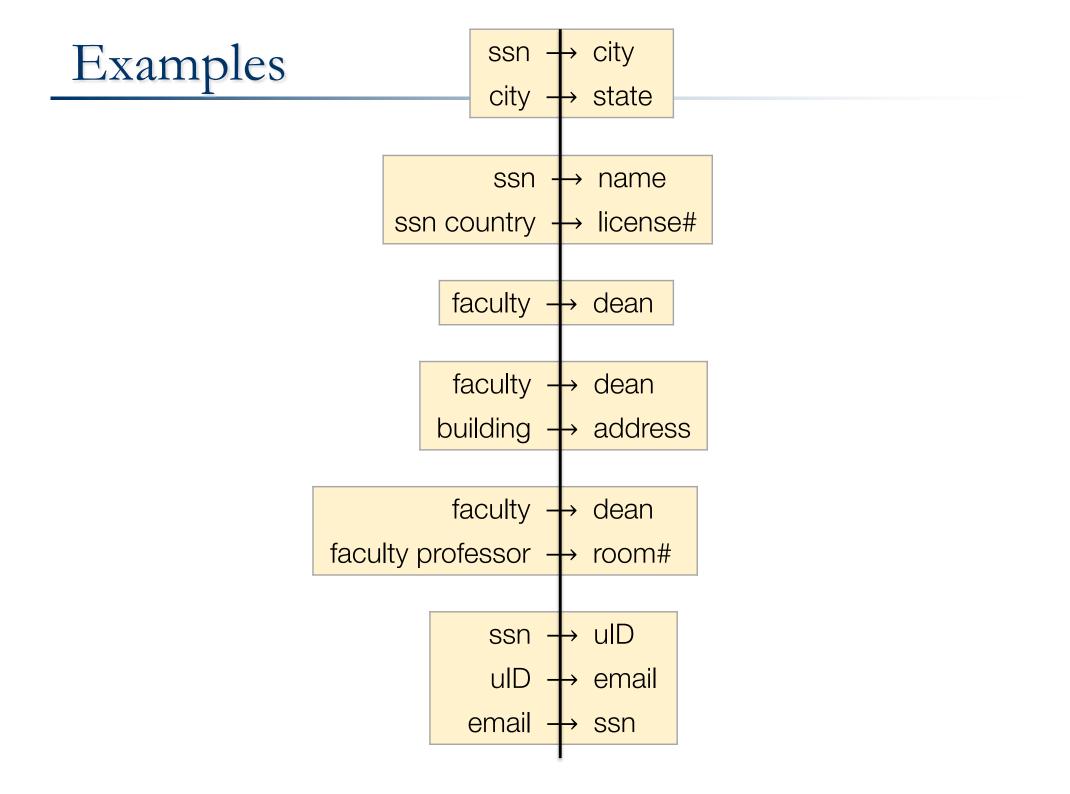
Problem 2: Counting Repairs

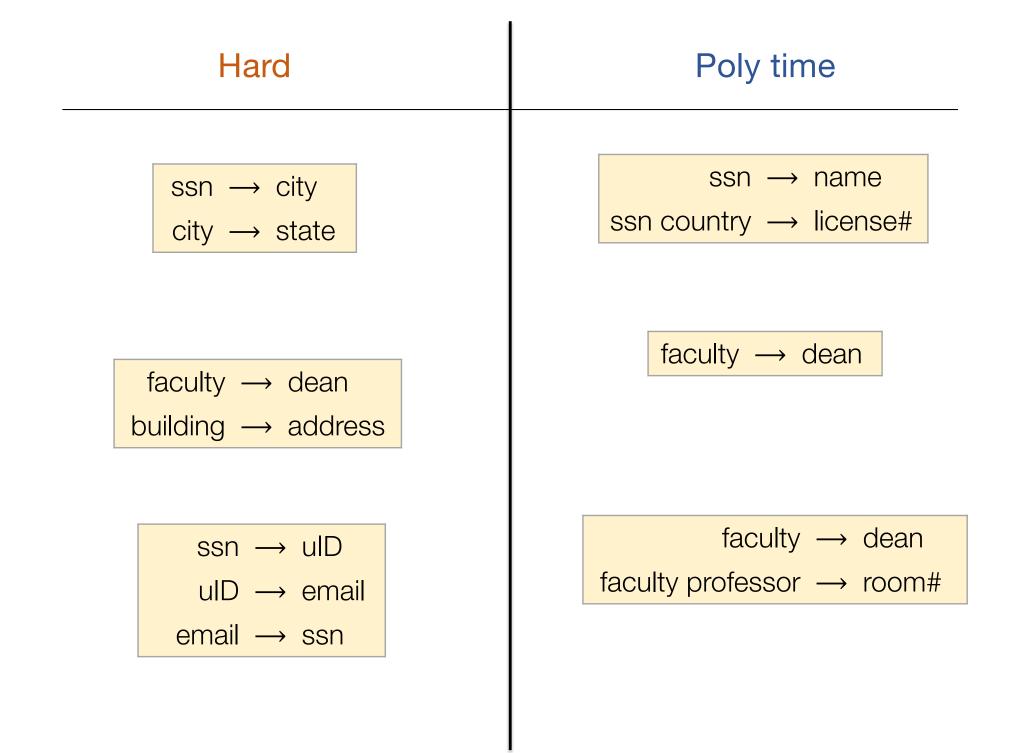
Problem 2: Repair Counting (#repairs)

Params: Relation schema S; set Σ of constraints

Input: Relation *D* over **S**

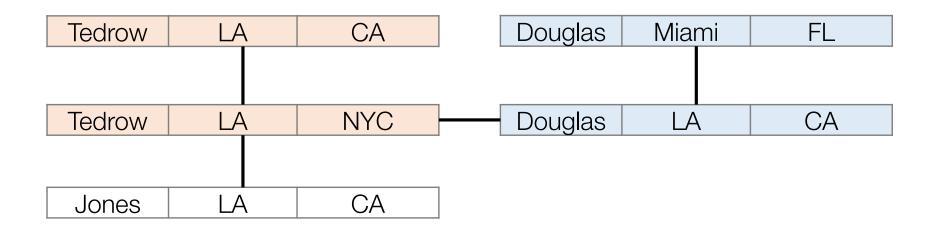
Goal: Compute the number of repairs of **D** w.r.t. Σ





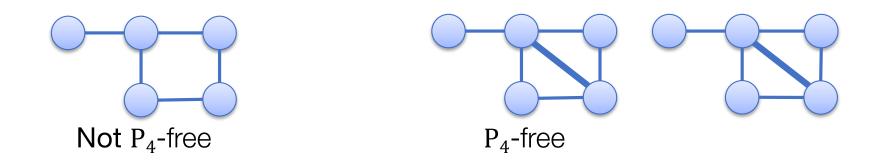
Repair Counting as MIS Counting

- For FDs, a repair is a Maximal Independent Set (MIS) of the conflict graph of the database
- Hence, repair counting amounts to MIS counting
 - Over conflict graphs
 - Again, these are not general graphs...



Counting Set-Minimal Repairs

- MIS counting is **#P-complete** [Provan-Ball-83] and inapproximable [Roth-96]
- Special tractable cases, e.g., P₄-free graphs
 - P₄-free graph (a.k.a. cograph): no induced path of length 4
- What about the conflict graphs?
- If the constraints are such that every conflict graph is P_4 -free, then the repairs can be counted in poly. time
- This is also a necessary condition!



THEOREM [Livshits-K-Wijsen-21]

The following are equivalent (under standard complexity assumptions) for every fixed set of FDs:

- 1. Repairs can be counted in poly. time
- 2. Every conflict graph is P_4 -free

Extension: classification for counting repairs that satisfy a CQ (w/o self-joins) [Calautti+22]

Tractable Characterization: lhs-Chain

The property that every conflict graph is P_4 -free has a syntactic characterization:

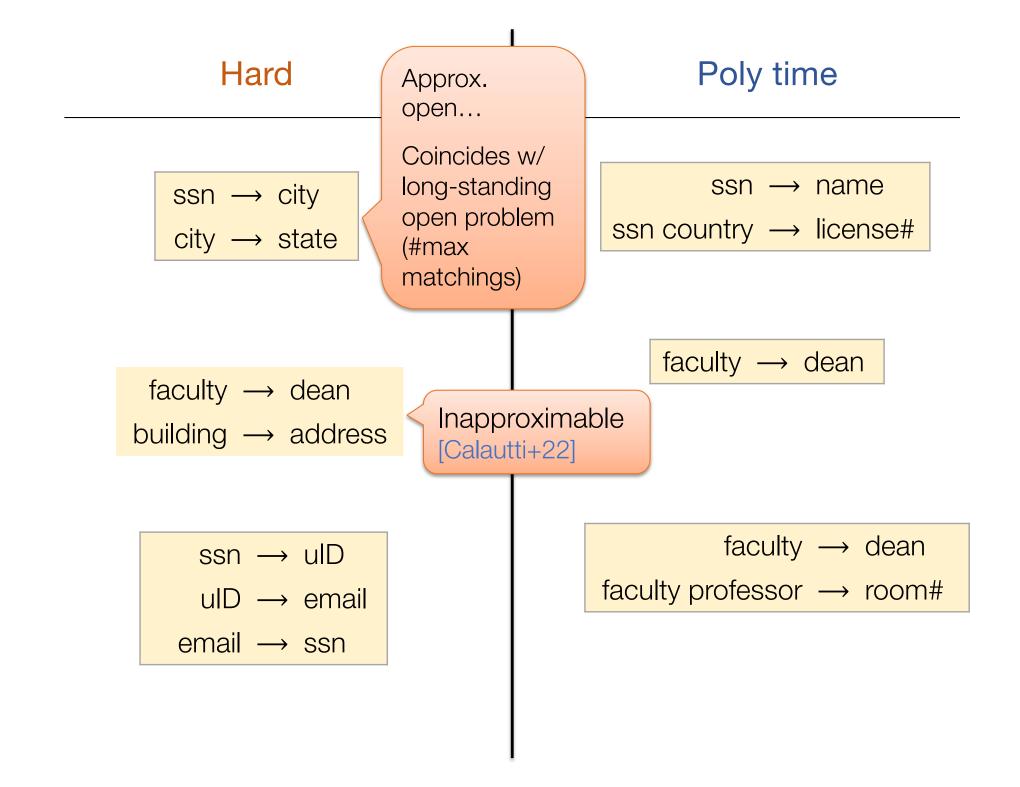
THEOREM [Livshits-K-Wijsen-21]

The following are equivalent for every set Σ of FDs:

- 1. Every conflict graph is P_4 -free
- 2. For every two FDs $X_1 \rightarrow Y_1$ and $X_2 \rightarrow Y_2$, either $X_1 \subseteq X_2$ or $X_2 \subseteq X_1$
 - Up to equivalence!

$$\begin{array}{c} X_1 \rightarrow Y_1, \dots, X_m \rightarrow Y_m \\ \text{so that } X_1 \subseteq X_2 \subseteq \dots X_m \end{array}$$

Testing: take a **minimal cover** of Σ (i.e., remove redundancy) and test whether it is *syntactically* an Ihs-chain



What we need to prove:

Let Σ be a set of FDs.

- 1. If Σ is an Ihs-chain up to equivalence, then the conflict graph is P₄-free.
- 2. Otherwise repair counting is #P-hard.

The proof is fairly simple:

- 1. If Σ is an Ihs-chain, conflict graph is P₄-free
 - Use a known characterization of P₄-freeness: cograph
- 2. If Σ is **not** an Ihs-chain:
 - Take a minimal cover and use it to construct a small example w/ induced P₄
 Use it again later...
 - Show a fact-wise reduction from $\{A \rightarrow B, B \rightarrow A\}$

– Hardness for $\{A \rightarrow B, B \rightarrow A\}$ is easy

Outline

- 1. Introduction & Background
- 2. Inconsistency Measures
- 3. Complexity of Calculation
- 4. Probabilistic Database Viewpoint

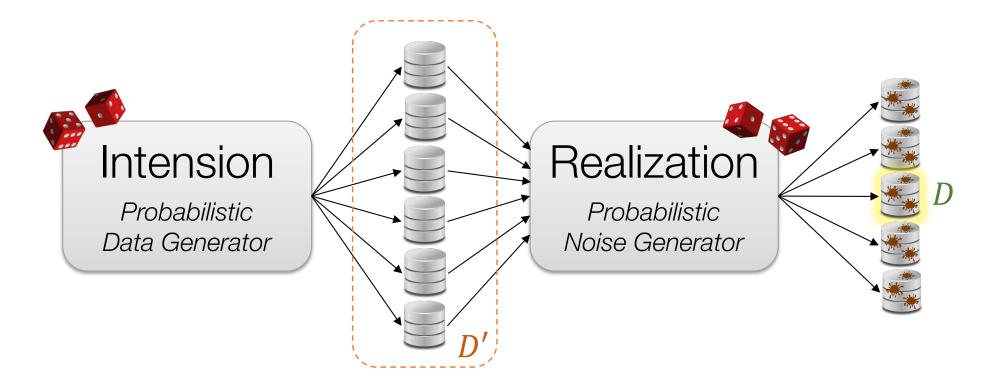
we are here

- 5. Responsibility Attribution
- 6. Concluding Remarks

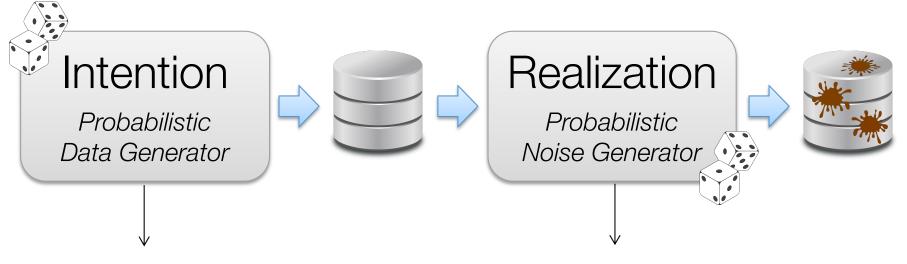
Noisy Data as a Noisy Channel

The Probabilistic Unclean Data (PUD) model [DeSa-Ilyas-K-Ré-Rekatsinas-18]

- Examples:
 - HoloClean [Rekatsinas-Chu-Ilyas-Ré-17]
 - HoloDetect [Heidari-McGrath-Ilyas-Rekatsinas-19]

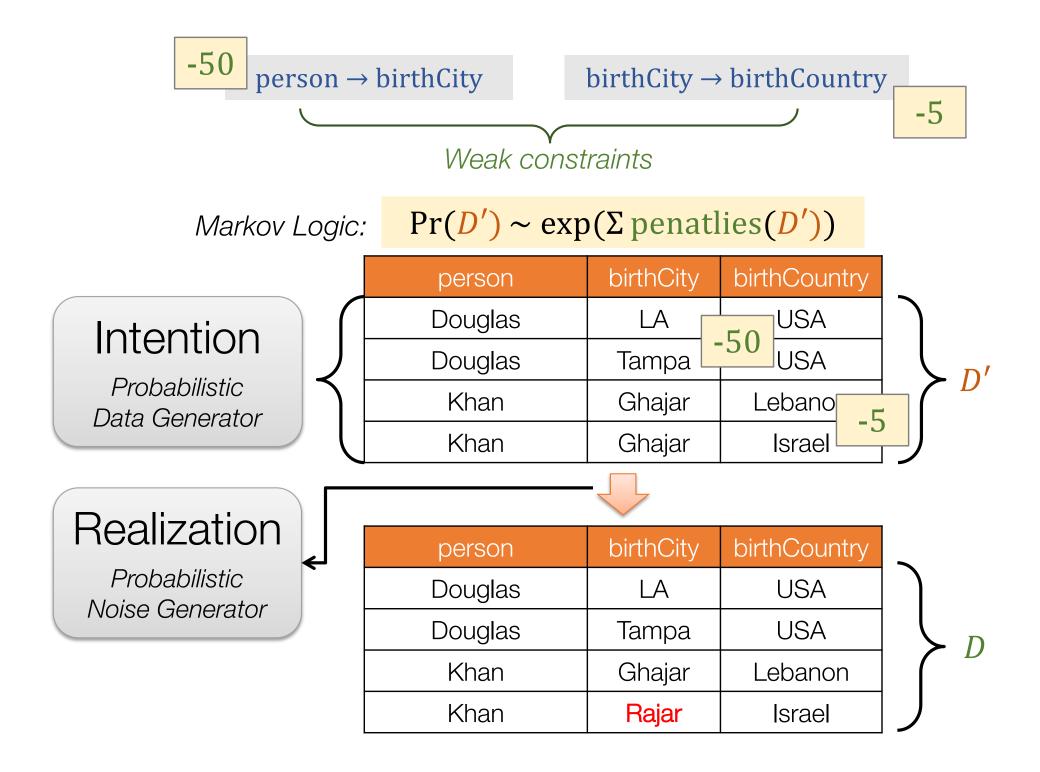


PUD Example 1: Update Repairs

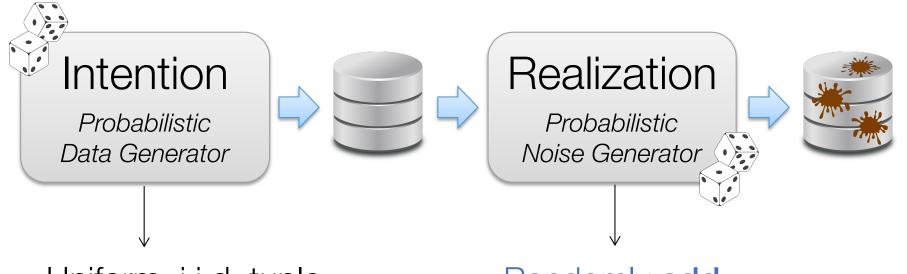


- Uniform, i.i.d. tuple generation
- Markov logic (factors) for weak constraints

Randomly change cell values

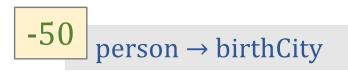


PUD Example 2: Subset Repairs



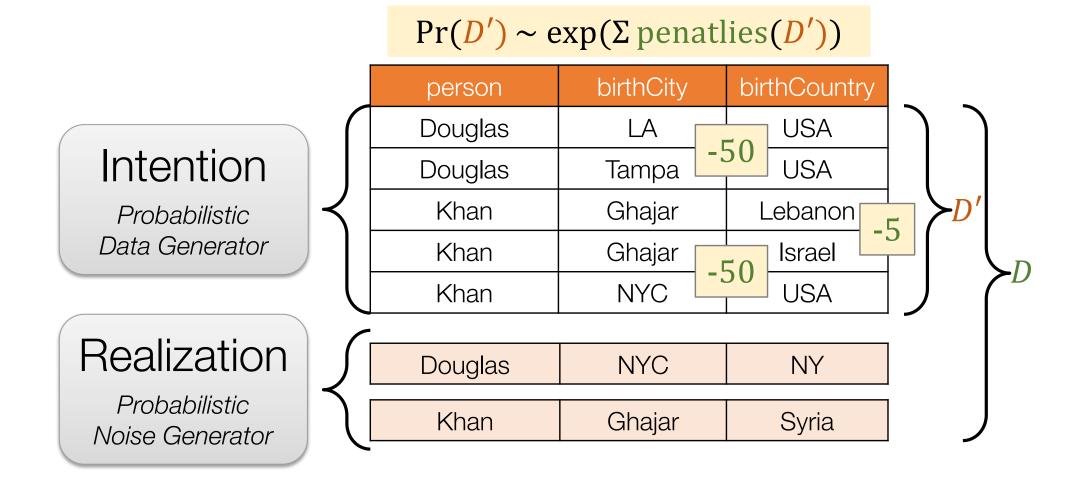
- Uniform, i.i.d. tuple generation
- Markov logic (factors) for weak constraints

Randomly add new tuples

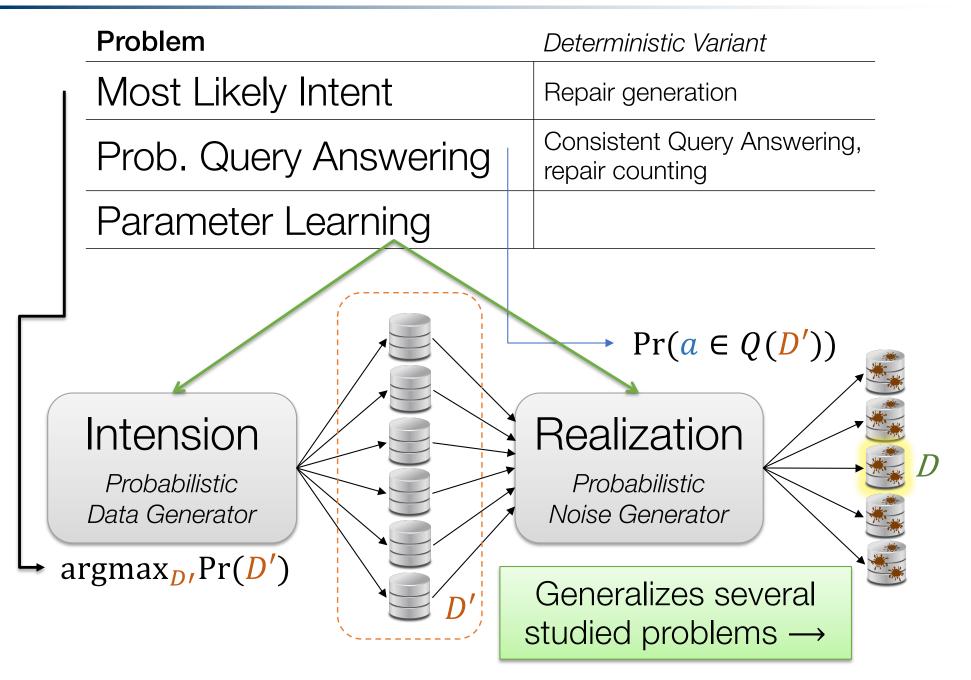


birthCity \rightarrow birthCountry

-5



Fundamental Problems



Probabilistic Duplicates [Andritsos-Fuxman-Miller-06]

person → birthCity, birthState

		person	birthCity	birthState	p
c disjoint -	- disioint	Cullen Douglas	LA	CA	0.6
	Cullen Douglas	Tampa	FL	0.4	
indon) disjoint <	Marion Jones	LA	CA	1.0
indep. { disjoint -		Irene Tedrow	NYC	NY	0.3
	disioint	Irene Tedrow	LA	FL	0.4
		Irene Tedrow	Hollywood	FL	0.2
		Irene Tedrow	Hollywood	CA	0.1

Later termed **Block-Independent Databases** (BID) [Dalvi-Ré-Suciu-11]

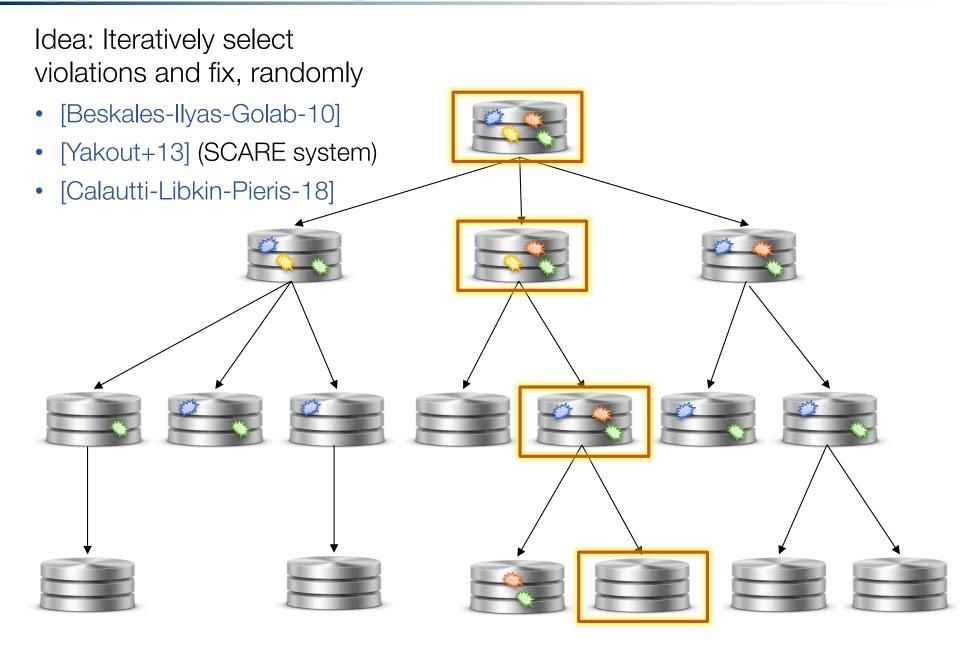
Beyond Key Constraints?

$person \rightarrow birthCity$ $birthCity \rightarrow birthState$

person	birthCity	birthState
Cullen Douglas	LA	CA
Cullen Douglas	Tampa	FL
Marion Jones	LA	CA
Irene Tedrow	NYC	NY
Irene Tedrow	LA	FL
Irene Tedrow	Hollywood	FL
Irene Tedrow	Hollywood	CA

[[]Gribkoff-VanDenBroeck-Suciu-14]

Approach 1: Repair as Markov Chain



Approach 2: TID Conditioning

$$\Pr(D') = \prod_{t \in D'} p(t) \times \prod_{t \notin D'} (1 - p(t))$$

person	city	state	p	person	qualification	p
Cullen	LA	CA	<mark>0.6</mark>	Cullen	9	<mark>0.3</mark>
Cullen	Tampa	FL	<mark>0.4</mark>	Cullen	5	<mark>0.7</mark>
Marion	LA	CA	<mark>1.0</mark>	Marion	8	1.0
Irene	NYC	NY	<mark>0.3</mark>	Irene	9	<mark>0.8</mark>

[deRougemont-95] [Grädel-Gurevich-Hirsch-98] [Dalvi-Suciu-04]

Tuple-Independent Database

[[]Gribkoff-VanDenBroeck-Suciu-14]

$person \rightarrow birthCity$ $birthCity \rightarrow birthState$

person	birthCity	birthState	p
Cullen Douglas	LA	CA	0.6
Cullen Douglas	Tampa	FL	0.7
Marion Jones	LA	CA	0.9
Irene Tedrow	NYC	NY	0.6
Irene Tedrow	LA	FL	0.9
Irene Tedrow	Hollywood	FL	0.5
Irene Tedrow	Hollywood	CA	0.8

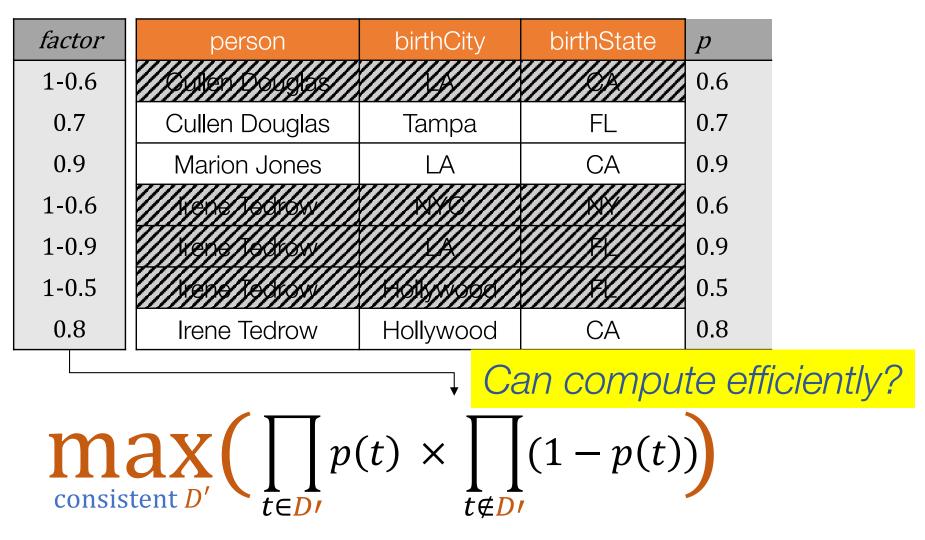
p(D') = Pr(D' | C)

Computational problem: find a most probable D' (MPD)

[[]Gribkoff-VanDenBroeck-Suciu-14]

MPD

person \rightarrow birthCity birthCity \rightarrow birthState



[Gribkoff-VanDenBroeck-Suciu-14]

MPD Complexity

- [Gribkoff-VanDenBroeck-Suciu-14] studied the computation of an MPD in the case of FDs
- They covered the case of unary FDs (singleattribute on the lhs)
 - With a gap remaining
- They left open the case of a general set of FDs (and the remainder of the unary case)
- Interestingly, the open problem has been resolved in a different context
 - ... that we have seen already!

THEOREM [Livshits-K-Roy-18]

Fix **any set of FDs**. The following are equivalent (under standard complexity assumptions):

- 1. An MPD can be found in poly-time
- 2. The measure repair_cost(Σ ,·) can be computed (and a cardinality repair can be found) in poly-time

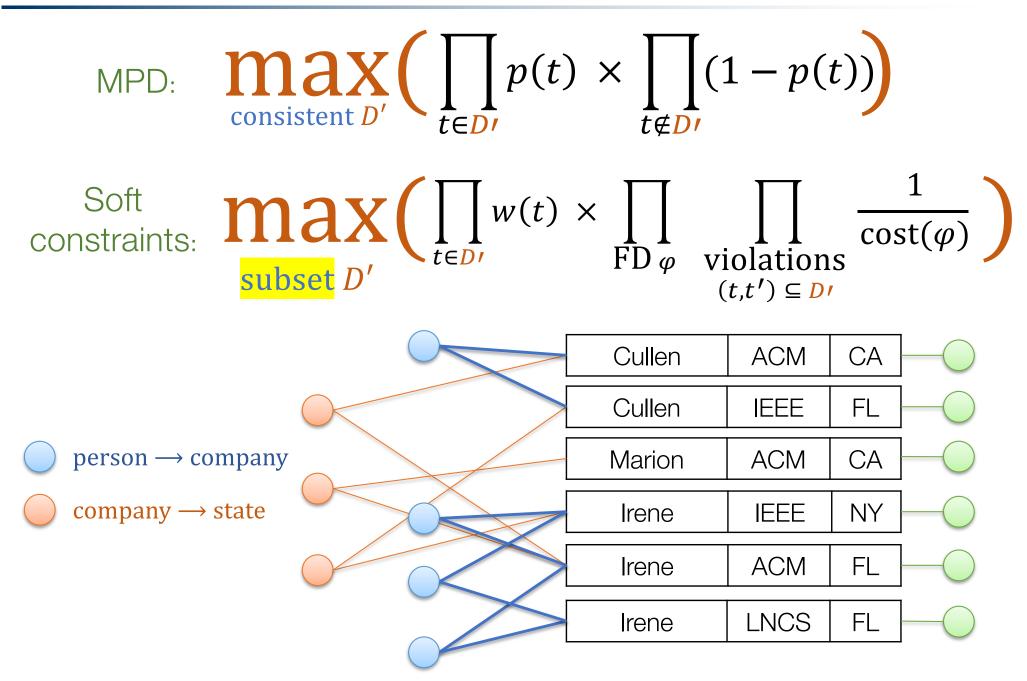
COROLLARY

Fix any set of FDs. The following are equivalent (under standard complexity assumptions):

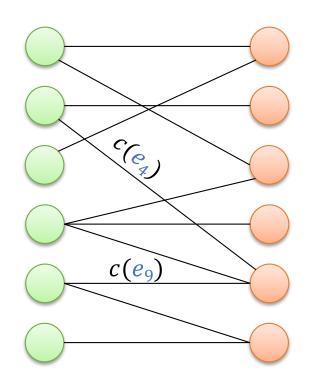
- 1. An MPD can be found in poly-time
- 2. The FD set can be **simplified until emptied** according to the simplification process of Livshits+

- Recall that we started with the problem of finding a most likely repair of a PUD
- The previous results cover the case where constraints are hard constraints
- What about **soft constraints**?
- Still largely open, yet considerable progress
 [Carmeli-Grohe-K-Livshits-Tibi-21]

MPD for Weak Constraints



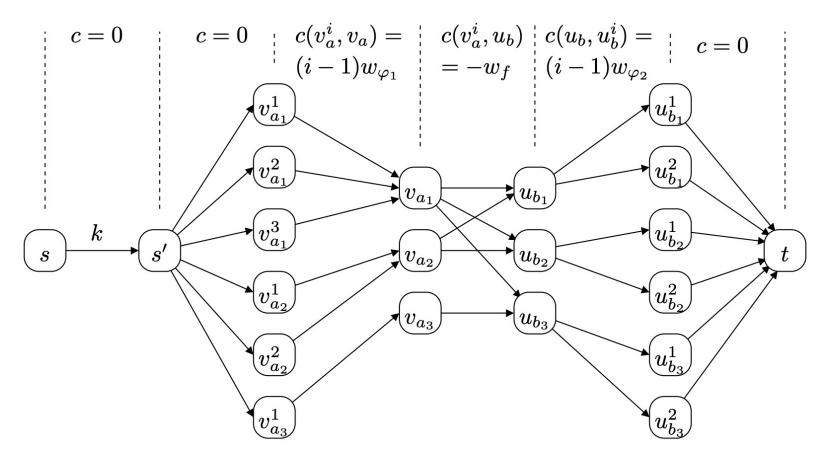
Example: "Liberal" Matching



- We need to select a subset of the relationships
- We pay a cost c(e) for denying each relationship e
- We pay a cost c_1 for each \sim
- Goal: least-cost liberal matching

Algorithm via *minimum-cost maximum flow* [Carmeli-Grohe-K-Livshits-Tibi-21]

Algorithm: Network Flow with Costs



- **Min-cost max-flow**: Given a network with capacities and costs on edges, find a maximal source-to-sink flow with a minimal cost
- Solvable in polynomial time, including the integral variant (capacities and flow are all integers) [Ahuja-Magnanti-Orlin-93]

Outline

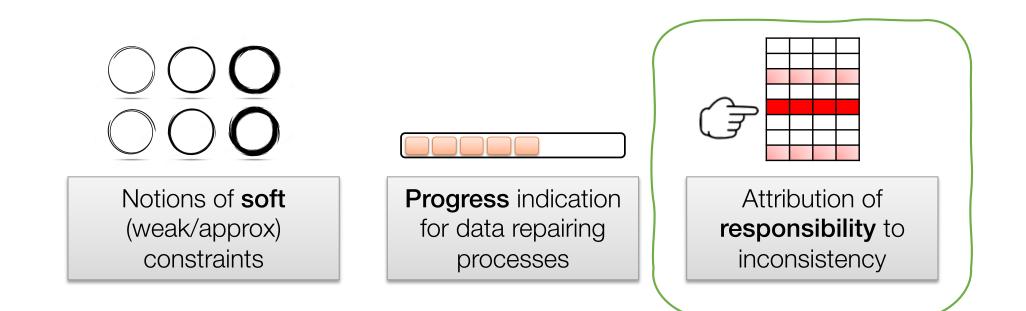
- 1. Introduction & Background
- 2. Inconsistency Measures
- 3. Complexity of Calculation
- 4. Probabilistic Database Viewpoint

5. Responsibility Attribution

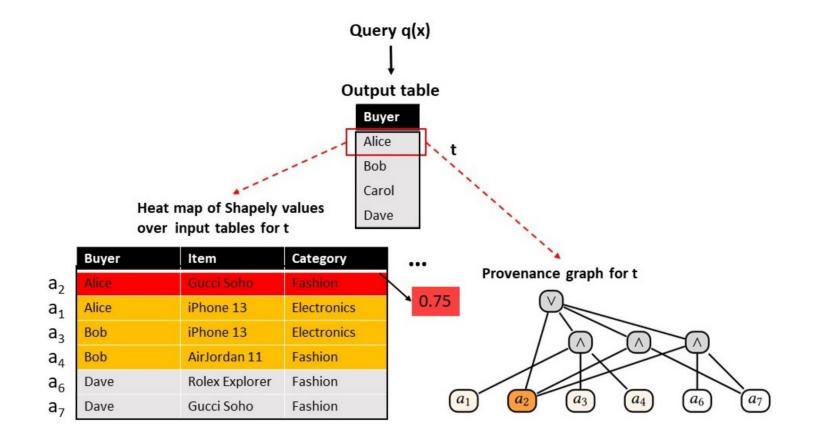
we are here

6. Concluding Remarks

Usage of Inconsistency Measures



Background: Explaining Query Answers



ShapGraph, SIGMOD-22 Demo [Davidson-Deutch-Frost-K-Koren-Monet-22]

Background: Explaining Query Answers

- Which DB tuples explain a query answer? Quantify each tuple's responsibility
- Various past proposals
 - Counterfactual analysis [Meliou+10] [Freire+15]
 - Minimal change for the tuple to matter [Chockler-Halpern04]
 - Causal effect [Salimi+16]
 - Based on probabilistic databases
 - Shapley value [Livshits+20] (next)
- If the query asks about inconsistency, we get to attribute a responsibility to each tuple
 - In turn, can be used to rank tuples for inspection / fix
- This query can be any inconsistency measure

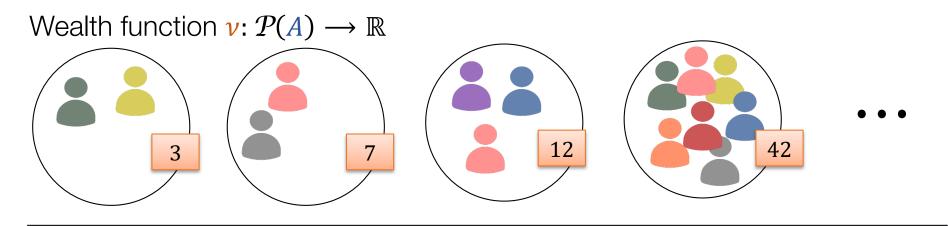
The Shapley Value

• A widely known profit-sharing formula in cooperative game theory by Shapley

- [L.S. Shapley: A value for n-person games, 1953] [Roth-88]

- Theoretical justification: unique modulo rationality desiderata
- Applied in various areas:
 - Pollution responsibility in environmental management
 - Influence measurement in social network analysis
 - Identifying candidate autism genes
 - Bargaining foundations in economics
 - Takeover corporate rights in law
 - Explanations (local) in machine learning
 - Explanations in databases

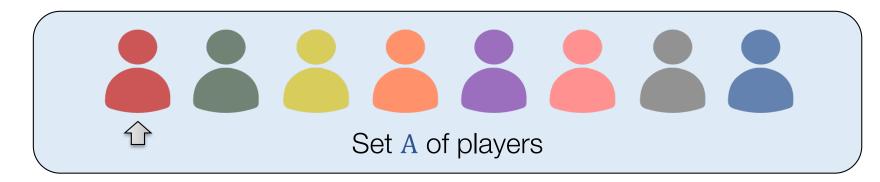
Shapley Definition

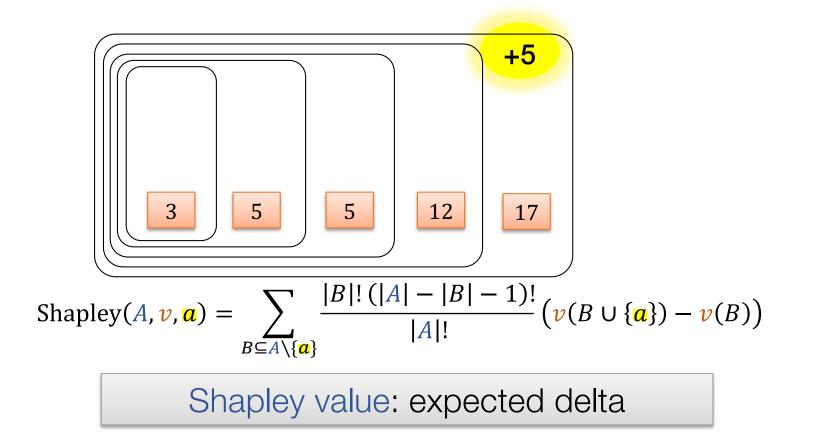


How to share the wealth among the players?

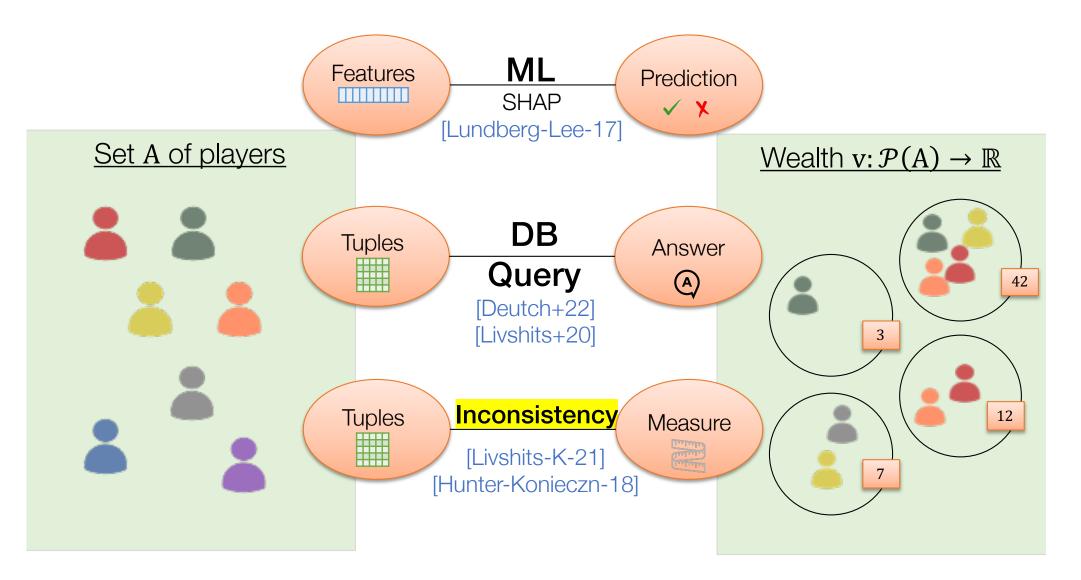
Shapley
$$(A, v, a) = \sum_{B \subseteq A \setminus \{a\}} \frac{|B|! (|A| - |B| - 1)!}{|A|!} \left(v(B \cup \{a\}) - v(B) \right)$$

Shapley Explained





Instatiations of the Shapley Value

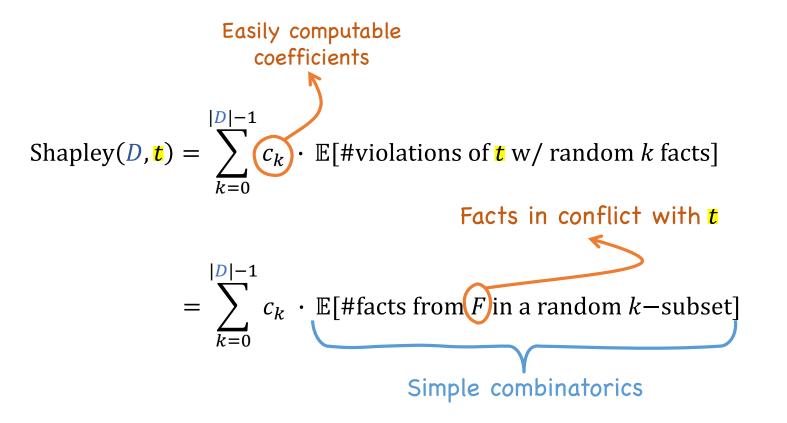


How to share wealth among players?

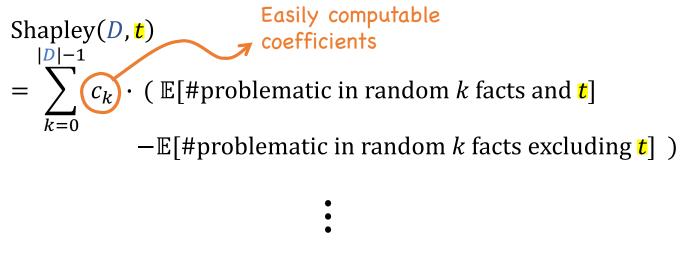
Compute a Shapley Value for Inconsistency

Params:	Relation schema S ; set Σ of constraints ; inconsistency measure I
Input:	Relation D over S ; tuple t of D
Goal:	Compute the Shapley value of t under $I(\Sigma, D)$

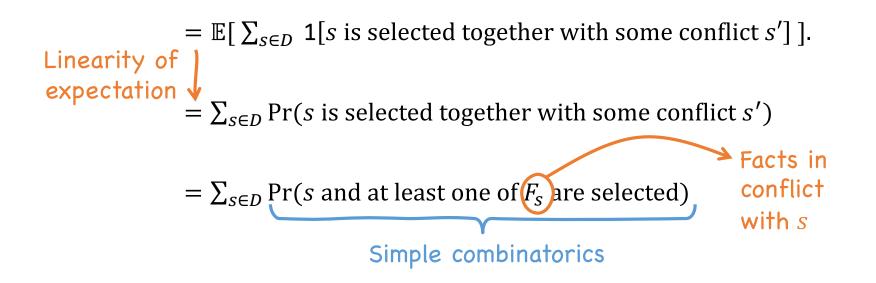
Example 1: Number of Violations



Example 2: Number of Problematic Tuples



 $\mathbb{E}[$ #problematic among random k facts]



Measure	lhs chain	No lhs chain, tractable rep_cost	other
drastic	PTIME	FP ^{#P} -complete	
#repairs	PTIME	FP ^{#P} -complete Next	
repair_cost	PTIME	Open	NP-hard
#violations	PTIME		
#problematic	PTIME		
			•
	Discussed Discussed		

Hardness Technique 1: Measure Hardness

Measures: **#repairs**, **repair_cost**

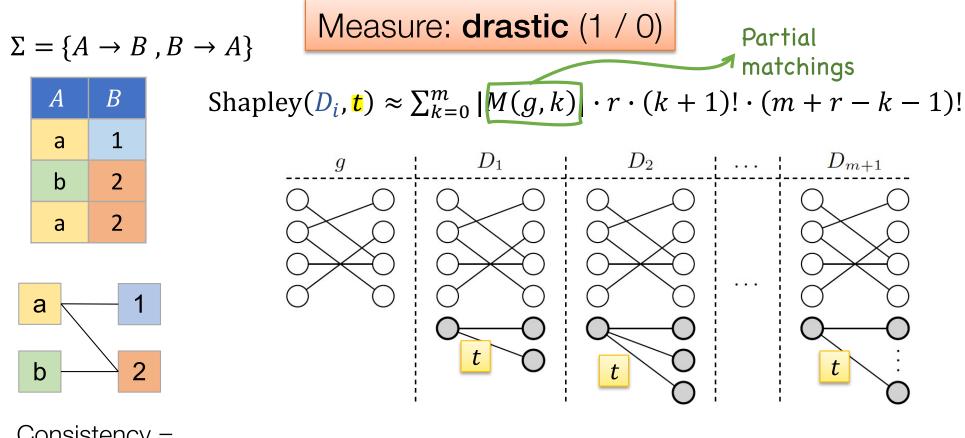
- Consider the cooperative game with the set A of players and utility v
- A general property of the Shapley values is that the sum of values is equal to the overall utility:

 $\sum_{a \in A} \text{Shapley}(A, v, a) = v(A)$

- Hence, from the Shapley values of facts we can compute the inconsistency measure over the whole database
- Conclusion 1: If Σ is not an Ihs-chain (u.t.e.), then Shapley value is #P-hard for #repairs
- Conclusion 2: If Σ is not emptied by the simplification of Livshits+, then Shapley value is NP-hard for repair_cost

Measure	lhs chain	No lhs chain, tractable rep_cost	other
drastic	PTIME	FP ^{#P} -CO	omplete Next
#repairs	PTIME	FP ^{#P} -complete Discussed	
repair_cost	PTIME	Open	NP-hard
#violations	PTIME		
#problematic	PTIME		
			•
	Discussed D		ussed

Hardness Technique 2: Linear Algebra (1)

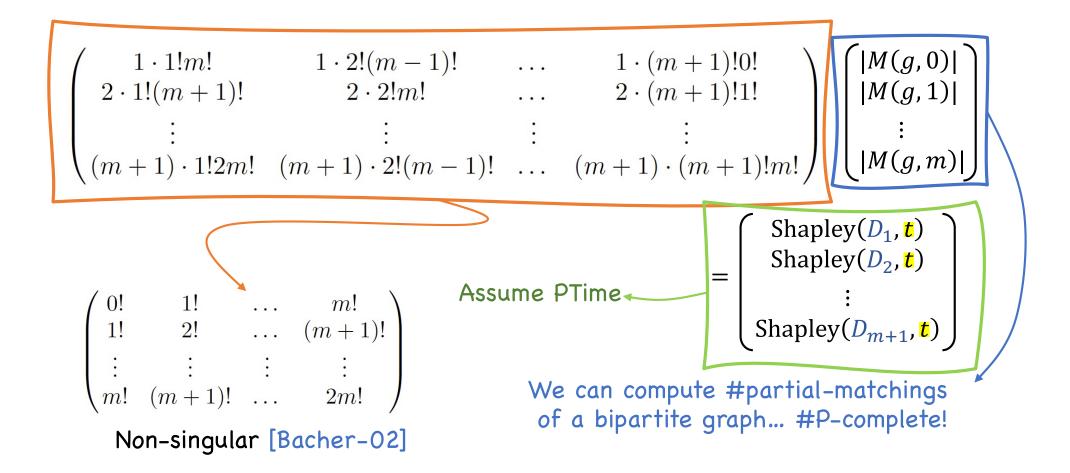


Consistency = being a partial matching

Hardness Technique 2: Linear Algebra (2)

Measure: drastic (1 / 0)

Shapley $(D_i, \mathbf{t}) \approx \sum_{k=0}^m |M(g, k)| \cdot r \cdot (k+1)! \cdot (m+r-k-1)!$



Hardness Technique 3: Fact-Wise Reduction

Measure: drastic (1 / 0)

- We showed hardness for $\{A \rightarrow B, B \rightarrow A\}$
- We need to show hardness for every set of FDs that is *not* an Ihs-chain
- But this, we get for free, since...
- For the hardness of #repairs, we already showed fact-wise reductions from $\{A \rightarrow B, B \rightarrow A\}$

Measure	lhs chain	No lhs chain, tractable rep_cost	other
drastic	DTIME	FP ^{#P} -c	complete
approx	PTIME	E	PRAS
#repairs	DTIME	FP ^{#P} -c	complete
approx	PTIME	Open	
repair_cost	PTIME	Open	NP-hard
approx		FPRAS	No FPRAS
#violations		PTIME	
#problematic		PTIME	Would imply an FPRAS
			for #MIS in a bipartite graph – long standing open problem

Approximation Algorithms

Measures: drastic ; cardinality

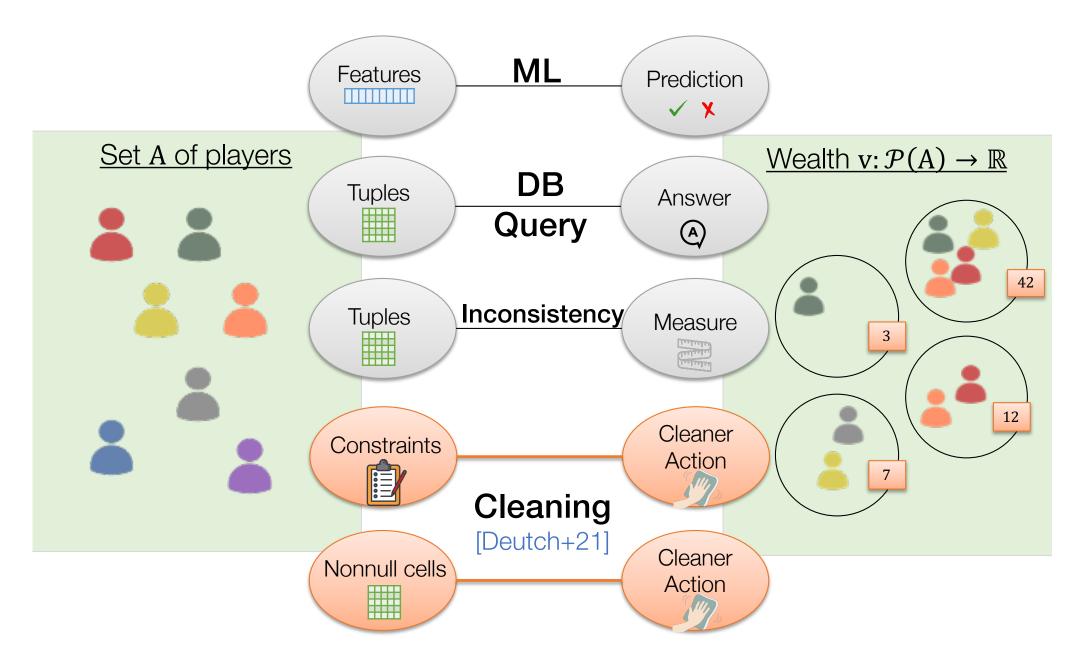
- In the case of drastic and cardinality, a tuple can increase the measure by either 1 or 0

 In the sampling-w/o-replacement trial
- Hence, the Shapley value of a fact is the probability that it increases the measure
- An additive approx. is straightforward: average over multiple trials
- The additive approx. gives a multiplicative approx. via the gap property that holds here:
 If Shapley is nonzero, it is at least 1/poly

Explanation of Cleaning Algorithms

- Deutch et al. studied explanations for the actions of black-box tools for data cleaning
 - [Deutch-Frost-Gilad-Sheffer-CIKM21]
- Specifically,
 - Why has this cell changed?
 - Which components are most responsible to the the cell value produced by the cleaner?
- Two types of components:
 - Constraints (DCs)
 - Cell values (non-null)

Instatiations of the Shapley Value



Outline

- 1. Introduction & Background
- 2. Inconsistency Measures
- 3. Complexity of Calculation
- 4. Probabilistic Database Viewpoint
- 5. Responsibility Attribution
- - 6. Concluding Remarks

we are here

Summary & Conclusions

- Quantitative measurement of inconsistency arise in various situations in database management
 - Classic/recent, implicit/explicit
- We discussed 3 use cases: notions of **soft constraints**, **progress indication**, attribution of **responsibility** to noise
- Interesting computational challenges, good understanding of complexity in limited settings
 - Functional dependencies (sometimes denial constraints) and tuples deletions
- Connections to probabilistic databases
 - Fundamental problems coincide, unified models studied

Some Open Problems (1)

- Empirical user studies on how measurements help quality management / data prep
 - "Data preparation accounts for about 80% of the work of data scientists" - Forbes
- Repairing model measures heavily based on tuple deletion
 - Insufficient theory about **cell updates**
 - For example, the complexity of repair-cost?
 - What would be good measures?

Some Open Problems (2)

- Beyond anti-monotonic what about foreign keys? Inclusion constraints?
 - Then, we should also consider tuple addition
- Shapley values we lack approximation algorithms and practical techniques
 - Approximation for Shapley value for repair-cost
 - Knowledge compilation? (e.g., via provenance tracking using ProvSQL as in DB queries [Deutch+22])
- Soft constraints we know the complexity of very few cases, basic problems still open

Main References (1)

- Ravindra K. Ahuja, Thomas L. Magnanti, James B. Orlin: Network flows theory, algorithms and applications. Prentice Hall 1993, ISBN 978-0-13-617549-0, pp. I-XV, 1-846
- Marcelo Arenas, Leopoldo E. Bertossi, Jan Chomicki: Consistent Query Answers in Inconsistent Databases. PODS 1999: 68-79
- Leopoldo E. Bertossi: Measuring and Computing Database Inconsistency via Repairs. SUM 2018: 368-372
- Marco Calautti, Georg Gottlob, Andreas Pieris: Non-Uniformly Terminating Chase: Size and Complexity. PODS 2022: 369-378
- Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, Theodoros Rekatsinas: A Formal Framework for Probabilistic Unclean Databases. ICDT 2019: 6:1-6:18
- Daniel Deutch, Nave Frost, Amir Gilad, Oren Sheffer: Explanations for Data Repair Through Shapley Values. CIKM 2021: 362-371
- Daniel Deutch, Nave Frost, Benny Kimelfeld, Mikaël Monet: Computing the Shapley Value of Facts in Query Answering. SIGMOD Conference 2022: 1570-1583
- Wenfei Fan, Floris Geerts: Foundations of Data Quality Management. Synthesis Lectures on Data Management, Morgan & Claypool Publishers 2012

Main References (2)

- John Grant, Anthony Hunter: Measuring the Good and the Bad in Inconsistent Information. IJCAI 2011: 2632-2637
- Eric Gribkoff, Guy Van den Broeck, and Dan Suciu. 2014. The Most Probable Database Problem. In BUDA.
- Jyrki Kivinen, Heikki Mannila: Approximate Inference of Functional Dependencies from Relations. Theor. Comput. Sci. 149(1): 129-149 (1995)
- Ester Livshits, Alireza Heidari, Ihab F. Ilyas, Benny Kimelfeld: Approximate Denial Constraints. Proc. VLDB Endow. 13(10): 1682-1695 (2020)
- Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, Moshe Sebag: The Shapley Value of Tuples in Query Answering. Log. Methods Comput. Sci. 17(3) (2021)
- Ester Livshits, Benny Kimelfeld: The Shapley Value of Inconsistency Measures for Functional Dependencies. ICDT 2021: 15:1-15:19
- Ester Livshits, Benny Kimelfeld, Sudeepa Roy: Computing Optimal Repairs for Functional Dependencies. ACM Trans. Database Syst. 45(1): 4:1-4:46 (2020)
- Ester Livshits, Benny Kimelfeld, Jef Wijsen: Counting subset repairs with functional dependencies. J. Comput. Syst. Sci. 117: 154-164 (2021)

Main References (3)

- Ester Livshits, Rina Kochirgan, Segev Tsur, Ihab F. Ilyas, Benny Kimelfeld, Sudeepa Roy: Properties of Inconsistency Measures for Databases. SIGMOD Conference 2021: 1182-1194
- Dongjing Miao, Zhipeng Cai, Jianzhong Li, Xiangyu Gao, Xianmin Liu: The Computation of Optimal Subset Repairs. Proc. VLDB Endow. 13(11): 2061-2074 (2020)
- Roth, A. E. 1988. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press.
- Shapley, L. S. 1953. A value for n-person games. Contributions to the Theory of Games 2(28): 307–317.