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Examples of Inconsistency (DBPedia)

Marion Jones Cullen Douglas lrene Tedrow

ldbo:helght ldbo:birthPlace ldbo:deathPIace
= 1.524 = dbr:California = dbr:California
=1.778 = dbr:Florida = dbr:Hollywood,_Los_Angeles

= dbr:New_York_City

dbo:parent
dbo-birthYear | v dbo-birthYear

1969 < Melinda Saxe > 1965

dbo:parent




Inconsistency

e “Inconsistent data”: integrity constraints violated
e \Why so?

— Imprecise data sources
= Crowd, Web pages, social encyclopedias, sensors, ... @

— Imprecise data generation

= Natural-language processing, sensor/signal processing, l /\ l
image recognition, ...

— Conflicts in data integration
= Crowd + enterprise data + KB + Web + ...

= Entities change address, status, ...

— And so on ...

N/
e
— Data staleness \L’*
—
N’



Measuring Inconsistency

To what extent are constraints being violated?

Who studies it?

e KR research: measuring the inconsistency of a KB
(set of logical statements)

e [B research: constraint mining, data cleaning,
probabilistic databases

e Al/SRL research: Markov Logic Networks,
Probabilisitic Soft Logic, ...



Inconsistency Measures to Soften LLogic

Inconsistency measures have been around,
explicitly or implicitly, playing different roles

Approximate Low level of inconsistency under
constraints some measure of choice

Start with a space of possible worlds D :

Markov Logic Pr(D) ~ F(inconsistency(D))

Start with an initial database D, make
Prob. DB via random changes to build D' :

soft rules Pr(D") ~ F; (intervention(D' | D))
- F,(inconsistency(D"))



Some Usage of Inconsistency Measures

000
000

Notions of soft
(weak/approx)
constraints

[Kivinen-Mannila-95]
[Sen-Deshpande-Getoor-09]
[Chu-llyas-Papotti-13]
[Rekatsinas-Chu-llyas-Ré-17]
[Kruse-Naumann-18]
[Rammelaere-Geerts-18

(R ]

Progress indication
for data repairing
processes

[Livshits-Kochirgan-Tsur-
llyas-K-Roy-21]

@_

Attribution of
responsibility to
inconsistency

[Hunter-Konieczny-10]
[Yun-Vesic-Croitoru-
Bisquert-18]
[Deutch-Frost-Gilad-
Sheffer-20]
[Livshits-K-21]



Plan for this Lecture

e [Discuss inconsistency measurement from the
viewpoint of the usages

o Reference past research projects with
collaborators

e -ocus on algorithms and complexity analysis for
relevant tasks

Leopoldo Bertossi lhab Iyas Ester Livshits Sudeepa Roy

N _
—

Main collaborators




Types of Integrity Constraints

e Key constraints Anti-monotonic constraints:

— Person(ssn,name,birthCity,birthState) consistency preserved by subsets

e Functional Dependencies (FDs)
— birthCity — birthState
— Generally, X — Y where X and Y are sets of attributes

e (Conditional FDs

— zip — city whenever country="“France”

e Denial constraints
— not| Parent(x,y) & Parent(y,x) | (forbidden patterns)

e Referential (foreign-key) constraints
— Parent(x,y) — Person(x) & Person(y)

Cf. [Fan-Geerts-12] for a comprehensive study of constraints oty Mansgimen
in data quality management |

Floris Geerts




person — birthCity
birthCity — birthState

®§

E A

“Conflict Graph”

/\

person | birthCity | birthState
Douglas LA CA
Douglas Miami FL
Tedrow LA CA
Tedrow LA NYC
Jones LA CA
Douglas LA CA

Example of Functional Dependencies

Douglas

Miami

FL

Tedrow

NYC

Jones

CA

Tedrow

CA




Repairs

e Inconsistent database violates constraints

— Representation: (2, D) where the database D violates
the set X of constraints

e Repair: a consistent variant via a legitimate fix
— Subset repairs: set-max consistent subset
— Cardinality repairs: cardinality-max consistent subset

— More: update repairs (value updates), symmetric-
difference repairs (tuple insertion/deletion), ...

— [Arenas-Bertossi-Chomicki-99]



Example: Subset/Cardinality Repairs

person — birthCity
birthCity — birthState

person | birthCity | birthState

Douglas LA CA

Douglas Miami FL

Tedrow LA CA

Tedrow LA NYC

Jones LA CA
person | birthCity | birthState person rbirthCity birthState |
Z TIU L7 TS5 /08
Douglas Miami FL | Douglas Miami FL
7 TN 7 Tedrow LA CA
Tedrow LA NYC 7 8007
T8065,045,,0860 Jones LA CA

(Subset) repair Cardinality repair



Classic Repair Problems

e Repalr checking
— Given D and D', is D" a repair of D?
— [Chomicki-Marcinkowski-05] [Afrati-Kolaitis-09]

e Consistent Query Answering (CQA)
— Which query answers hold albeit inconsistency? Tuples in Q(D") for
all repairs D' [Arenas+99] [Koutris-Wijsen-17]

e Repairing / Cleaning
— Compute a (good/best) repair
— [Bertossi+08] [Kolahi-Lakshmanan-09] [Livshits-K-Roy-18]

e Repalr counting
— For databases [Maslowski-Wijsen-14] [Livshits+21] [Calautti+22]
— For knowledge bases [DeBona-Grant-18] [Hunter-Konieczn-18]
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Definition: Inconsistency Measure

e Notation:
— 2 denotes a set of integrity constraints
- D denotes a database

e An nconsistency measure is a function I that
maps each pair (£, D) to a non-negative number,
such that I(Z, D) > 0 iff D violates 2

— Intuitively, I(2,D) > I(2',D") means that D is farther
from satisfying ~ than D’ from satisfying '

e \\e focus on anti-monotonic X (e.g., FDs, DCs)



Basic Inconsistency Measures

e Drastic: 1 or O (inconsistent or consistent)
— [Thimm-17] (Later: makes sense in responsibility attribution)

e #violations (i.e., set-min inconsistent subsets)

— [Kivinen-Mannila-95] [Hunter-Konieczny-08] (“MI Shapley
Inconsistency”)

e #problematic tuples (i.e., tuples in violations)
— [Kivinen-Mannila-95] [Grant-Hunter-11]

e Hrepairs: number of maximal consistent subsets
— [Grant-Hunter-11]

e repair_cost: minimal #tuples to delete to attain

consistency (cardinality repair)

— [Huhtala+98] [Kivinen-Mannila-95] [Grant-Hunter-13] [Bertossi-
18] [Rammelaere-Geerts-18] (constraint “confidence”)




Example 1

Violations

[

\

drastic(Z,D) =1

Y, = {person — city , city — state}

o

person city state

Douglas LA CA

Douglas | Miami FL

Tedrow LA CA

Tedrow LA NYC
Jones LA CA
Saxe Vegas NV

D

#violations(2, D) = 4

#problematic(Z,D) =5

RN

Problematic

—

#repairs(2, D) = 3

repair_cost(2, D) = 2

Repairs
(
person city state person city state person city state
Douglas LA CA Douglas | Miami FL Douglas | Miami FL
Tedrow LA CA Tedrow LA CA Tedrow LA NYC
Jones LA CA Jones LA CA Saxe Vegas NV
Saxe Vegas NV Saxe Vegas NV




Example 2

Y, = {person — city , city — state}

person city state person city | state
12 LA CA p1 LA CA
[ ToA T, | ) e Tham o
p.50 LA éA péo Ut.ica NY
Douglas LA NY Douglas LA NY
drastic(Z, D) =1 drastic(Z, D,) =1
#violations(Z, D) = 50 #violations(Z, D,) = 1
#problematic(Z, D;) = 51 #problematic(Z, D,) = 2
#repairs(Z, D) = 2 #repairs(Z, D,) = 2
repair_cost(2, D;) =1 repair_cost(2,D,) = 1




Some Concepts of Soft Constraints

¢ Mining approximate constraints

— [Kivinen-Mannila-95]: #violations, #problematic, repair_cost ;
[Huhtala+98]: repair_cost ; DCFiner [Pena-Almeida-Naumann-19J:
#violations ; [Livshits-Heidari-llyas-K-20] abstraction

e Markov Logic Networks [Richardson-Domingos-06]
— Factor for every violation/satisfaction (weighted #violations)
— Symmetric — every possible tuple is a variable
— Instances: DeepDive [DeSa+16], Pr. Datalog+/- [Gottlob+11]
— Similar concept: PrDB [Sen-Deshpande-Getoor-09]

e Soft-key constraints [Jha-Rastogi-Suciu-08]
— Factor for every key violation of a specified size

— Probabilistic graphical model — similar to MLN (factor for each
violation/satisfaction)

e Approximate multivalued dependencies (MVD)
— Conditional entropy as a measure of satisfaction [Kenig-Suciu-20]



Postulates for Inconsistency Measures

e (Goodness properties (postulates) of
iInconsistency measures studied by the KR

community

— [Hunter-Konieczny-08] [Grant-Hunter-11] [Thimm-17] [Grant-
Parisi-19] ...

— Different focus from databases
» KB = set of logical statements

» Postulates mainly talk about how changes in the KB
affect the measure

¢ \Ve studied properties desired for progress
Indication in data repairing



The Basic Measures for Repairing Progress

Monotonicity Continuity Progression
Stricter constraints A single operation We can always find
can only increase has a limited impact an op that reduces
inconsistency ‘on inconsistency inconsistency
Studied in KR “acceptable “continuously
(w./ differences) pacing” revised estimates”
[Grant-Parisi-19] [Luo-Naughton-Ellmann-Watzke-04]

Denial constraints / functional dependencies

Monotonicity Continuity Progression
Drastic v x x
#violations \ﬂ/)\ x v
#problematic W x v
#repairs x v x
repair_cost 4 v v

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]



Experiments

Measure value

Measure value

Tax (0.35%)
1

0.8
0.6
0.4
0.2

0
0 20 40 60 80 100

Airport (6.93%)
1

0.8
0.6
0.4
0.2

0
0 20 40 60 80 100
Iteration

Stock (0.33%)
1

0.8
0.6
0.4
0.2

0
0 20 40 60 80 100

Adult (11.68%)
1

0.8
0.6
0.4
0.2

0
0 20 40 60 80 100
Iteration

Hospital (6.8%)
1

0.8
0.6
0.4
0.2

0
0 20 40 60 80 100

Flight (7.07%)
1

0.8
0.6
0.4
0.2

0
0 20 40 60 80 100
Iteration

Food (0.16%)
1

0.8
0.6
0.4
0.2

0
0 20 40 60 80 100

Voter (16.76%)
1

0.8
0.6
0.4
0.2

0
0 20 40 60 80 100
Iteration

Id (+)’ IMI (—)) IP (_'_), IMC (+)’ -[7{ (+)’ and

??

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]



Rationality & Tractability?

Monotonicity Continuity Progression
Drastic v x x
#violations v'/% x v
#problematic v/% x v
#repairs x 4 x
v v v

NP-hard for DCs [Lopatenko-Bertossi-07] ; even FDs [Livshits-K-Roy-18]

[ractable measure with all 37

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]



Repair-Cost as an 1P

x; for every tuple t
x; =1: deletet

minimize: z Xt

teD

Vviolation ¢ Z e 2 1
subject to: tec

V. x.€ 10,1
Recall: min set of Lot { }
tuples that violates

a constraint (DC)

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]



Linear Relaxation

x; for every tuple t
x; =1: deletet

minimize: z Xt

teD

Vviolation ¢ Z e 2 1
subject to: tec

VexpeQl1}l 0<x.<1
Recall: min set of
tuples that violates

a constraint (DC)

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]



Rationality & Tractability?

Monotonicity Continuity Progression

Drastic v x x

#violations v'/% x v

#problematic v/% x v

#repairs x 4 x

repair_cost v 4 v

frac_cost v 4 v
Poly. time

[ractable measure with all 37

[Livshits-Kochirgan-Tsur-Ilyas-K-Roy-SIGMOD21]
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Complexity Analysis

¢ \We now study the complexity of computing the
basic measures

e Restrictions:

— Functional dependencies

= Some results apply to denial constraints... and to any anti-
monotonic constraints where we can materialize all (minimal)
violations

— Coarse-grained complexity (exptime vs. ptime)



Basic Inconsistency Measures

e Drastic: 1 or O (inconsistent or consistent)
— [Thimm-17] [ Polynomial time (basic SQL) }

e #violations (i.e., set-min inconsistent subsets)

— [Kivinen-Mannila-95] [Hunter-Konieczny-08] (“MI Shapley
Inconsistency”) [ Polynomial time (basic SQL) }

e #problematic tuples (i.e., tuples in violations)
— [Kivinen-Mannila-95] [Grant—Hunter—H][ Polynomial time (basic SQL) }

e Hrepairs: number of maximal consistent subsets
— [Grant-Hunter-11] Next

e repair_cost: minimal #tuples to delete to attain

consistency (cardinality repair) | Next

— [Huhtala+98] [Kivinen-Mannila-95] [Grant-Hunter-13] [Bertossi-
18] [Rammelaere-Geerts-18] (constraint “confidence”)




Studied Computational Problems

Problem 1: Compute a Cardinality Repair (repair_cost)

Params: Relation schema S ; set X of constraints | greatest
consistent
Input: Relation D over S subset

Goal: Find asmallest £ € D s.t. D\E satisfies Z

Problem 2: Repair Counting (#repairs)

set-max Params: Relation schema S ; set X of constraints
consistent
subsets Input: Relation D over S

Goal: Compute the number of repairs of D w.r.t. 2



Data Complexity

e TJypically, the problems we consider involve:
— A database D (typically one relation)
— A set X of constraints
— Both D and X are over a relational schema S

e \When we analyze the complexity of problems, we adopt
the conventional data complexity [Vardi-82]

e Hence, the input consists of only the database D;
everything else (e.g., S and %) is fixed
— Treated as parameters

e Hence, every S and X give rise to a separate
computational problem Ps 5

e Possible that one Ps 5 is tractable & other Pg, 5, is hard



Classifications (Dichotomies)

® |n our case, every set of functional dependencies
can have a different complexity

e Hence, we aim for complete characterizations
that will determine the complexity of every set of

functional dependencies
— A.k.a. dichotomy results or meta-theorems

TS,
Y
Psx

X-hard PTime



Problem 1: Cardinality Repair

Compute a Cardinality Repair (repair_cost)

Params: Relation schema S ; set 2 of constraints
Input: Relation D over S

Goal: Find a'smallest £ € D s.t. D\E satisfies X

Fixed Same as computing the

size of such E w/0
Weighted version: tuples have finding E itself
cost; “smallest” replaced w/
“least total score”



Vertex Cover with Structure

person — birthCity
birthCity — birthState

Note: While minimum VC is NP-
hard, the conflict graphs are not
general graphs; they are special
graphs defined by relations and a

Cardinality repair of D
= min VC of the conflict graph

person | birthCity | birthState
Douglas LA CA
Douglas Miami FL fixed set of FDs
Tedrow LA CA
Tedrow LA NYC
Jones LA CA
“Conflict Graph” Douglas CA

/\

Douglas

Miami

FL

Tedrow LA NYC

Jones

CA

Tedrow LA CA




Example

Y. = {fid » fname, fname - fid, fid - city, fid room — floor}

fname room floor

FO2 HQ 122 30 Madrid
FO2 HQ 122 1 Madrid
B35 3 London
B25 2 London




Simplification 1: Common lhs

X X
Y. = {facility - city, facility room — floor}

v

{@ - city, room - floor}

facility room floor city

HQ 322 3 Paris
HQ 322 30 Madrid
HQ 122 1 Madrid
Lab1 B35 3 London




Simplification 2: Consensus

X X
Y. ={@ - city, room - floor}

v

{room - floor}

facility room floor




Simplification 3: Matching

X X X X X X
Y, = {fid - fname, fname — fid, fid — city, fid room — floor}
Reduction to
@ Maximum-Weight
_ Matching of a
{® — city, room — floor} bipartite graph
fid fname room floor city D @)

FO1 HQ 300 3 Paris " *

FO2 HQ 122 30 Madrid QN\%
FO2 HQ 122 1 Vadid

FO3 Lab B35 3 London
FOT Lab B25 2 London




Repeated Simplification

X X X X X X
Y. = {fid » fname, fname - fid, fid - city, fid room — floor}

{@ — city, room — floor}

{room — floor}

{@ — floor}

U



The Unified Simplification Rule

Let 2 be a set of FDs, X,Y attribute sets such that:

1. Sets X and Y functionally determine each other
.e., ClosureZ(X) = Closurez(Y)

2. Every FD in X~ contains either X or Y in its Ihs

Finding a cardinality repair under X

reduces in polynomial time to

finding a cardinality repair under ~ — XY.



Example 1: X =Y (Common lhs)

X X
Y. = {facility - city, facility room — floor}

@ X = {facility}

{@ — city, room — floor} Y = {facility}

facility room floor city
HQ 322 3 Paris
HQ 322 30 Madrid
HQ 122 1 Madrid

Lab B35 3 L.ondon




Example 2: X = @ (Consensus)

X X
Y = {@ - city, room - floor} X = ¢

@ Y = {city}

{room - floor}

facility room floor
HQ 322 3 Paris

HQ 322 30
HQ 122 1




Example 3: General X,Y (Matching)

X X X X X X
Y. = {fid » fname, fname - fid, fid - city, fid room — floor}

@ X = {fname}

{@ - city, room - floor} Y = {fid}
fid fname room floor city
FO1 HQ 322 3 Paris
FO2 HQ 122 30 Madrid
FO2 HQ 122 1 Madrid
FO3 Lab1 B35 3 London
FO1 Lab1 B25 2 London




Completeness

e Simplification rule simplifies the computation of
repair_cost by eliminating attributes and
dependencies

e Not an arbitrary algorithmic trick...
¢ [t is complete for computing repair_cost!



THEOREM [Livshits-K-Roy-20]

Fix any set 2 of FDs. The following are equivalent (under
standard complexity assumptions):

1. The measure repair_cost(Z,:) can be computed
(and a cardinality repair can be found) in poly-time

2. The FD set X can be simplified until emptied




Proot Technique: Fact-Wise Reduction

e How do we prove hardness for infinitely many FD sets”
e A common approach is the fact-wise reduction

Let 5, and S, be database schemes with the constraints
and Z,. A fact-wise reduction is a mapping from facts
over S, to facts R, (b4, ..., b,,,) over S, that:

— |s injective (one-one)
» Examples: (a,b) = (a,a.b,b) (a,b,c) = (b,a.b.c)

— Preserves consistency and inconsistency

— |s computable in polynomial time

e (General mechanism to translate (reduce) problems on
(51, %,) to problems on (S5, Z,) ; if former hard, so latter



About the Proof of Hardness  »._s « o, s
(1) X @) Xz
S
(3) L} 'lx—zl b 1 —
Simplification _ _
i X1 ard X1
X X;
Sl Lo 7 (\ 9
Y 4 s (8) Xi it
Lemma 4.22 “)
consensus
I A-A I lA—X1X2|
Lemma 4.21 # common lhs lhs marriage 1 Lemma 4.23
i A b T R
——————— e
Class (1) Class (2) Class (3) Class (4) Class (5)
Lemma 4.15 Lemma 4.16 Lemma 4.16 Lemma 4.17 ] Lemma 4.18 FW reductions

\

X

emma 4.7

[ Apasc—B ] [ Apa—B—cC ] [AABHACHBCJ [AAB—>C—>B ]
A

Lemma 4.12

Lemma ZN /:mma 4.10

[ MAX-2-SAT j [ Triangle Packing j [ MAX-NM-SAT ]

[Livshits-K-Roy-20]

Direct proofs
of hardness




Approximations

e A 2-approx of repair-cost can be obtained easily using a
2-approx for Vertex Cover

— (Can be generalized to denial constraints (constant approx)

e [Miao et al.] used the dichotomy and fact-wise reductions
In follow-up work on approx bounds for cardinality repair

e |mproved known upper bounds for general VC in the case
of conflict graphs, based on the set of FDs

e Developed optimization techniques and heuristics to
establish efficient, high-quality approximations

[Miao-Cai-Li-Gao-Liu-VLDB20)]



Problem 2: Counting Repairs

Problem 2: Repair Counting (#repairs)

Params: Relation schema S ; set X of constraints
Input: Relation D over S

Goal: Compute the number of repairs of D w.r.t. 2



Examples

ssn
city

ssn -
ssn country -

faculty

faculty
building

faculty
faculty professor

ssn
ulD
email

-+

-+

city
state

— name
— license#

dean

dean
address

dean
room#

ulD
email
ssN



Hard

Poly time

ssn — cCity
city — state

faculty — dean
building — address

ssn — ulD
ulD — emall
email — ssn

ssn — name
ssn country — license#

faculty — dean

faculty — dean
faculty professor — room#



Repair Counting as MIS Counting

e For FDs, a repair is a Maximal Independent Set
(MIS) of the conflict graph of the database

e Hence, repair counting amounts to MIS counting
— Over conflict graphs
— Again, these are not general graphs...

Tedrow LA CA Douglas Miami FL

Tedrow LA NYC Douglas LA CA

Jones LA CA




Counting Set-Minimal Repairs

e MIS counting is #P-complete [Provan-Ball-83] and
iInapproximable [Roth-96]

e Special tractable cases, e.qg., P,-free graphs
- P,-free graph (a.k.a. cograph): no induced path of length 4

o |What about the conflict graphs?

e |f the constraints are such that every conflict graph is
P,-free, then the repairs can be counted in poly. time

e [hisis also a necessary condition!

O—Q Q”“Z; 8@2 8

Not P,-free P,-free




Dichotomy Theorem

THEOREM |[Livshits-K-Wijsen-21]

The following are equivalent (under standard complexity
assumptions) for every fixed set of FDs:

1. Repairs can be counted in poly. time
2. Every conflict graph is P,-free

Extension: classification for counting repairs that satisfy a CQ
(w/0 self-joins) [Calautti+22]



Tractable Characterization: lhs-Chain

The property that every conflict graph is P,-free
has a syntactic characterization:

THEOREM [Livshits-IK-Wijsen-21]

The following are equivalent for every set X of FDs:

1. Every conflict graph is P,-free

2. Foreverytwo FDs X, — Y, and X, — V., either X,
« Up to equivalence! | Xy> Y, Xy oY, |
sothat X, € X, €...X,,

Testing: take a minimal cover of X (i.e., remove redundancy)
and test whether it is syntactically an Ihs-chain



Hard

ssn — cCity
city — state

faculty — dean
building — address

ssn — ulD
ulD — emall
email — ssn

ApPprox. Poly time
open...

Coincides w/

long-standing ssn — name
open problem | son country — license#
(#max
matchings)
faculty — dean
Inapproximable
[Calautti+22]

faculty — dean
faculty professor — room#




Proof Structure

What we need to prove:

Let 2 be a set of FDs.

1. If Z is an |hs-chain up to equivalence, then the
conflict graph is P,-free.

2. Otherwise repair counting is #P-hard.

The proof is fairly simple:
1. If 2 is an |hs-chain, conflict graph is P,-free
» Use a known characterization of P,-freeness: cograph

2. If 2 is not an lhs-chain;

= Take a minimal cover and use it to construct a

small example w/ induced P, Use it again later..

= | Show a fact-wise reduction from {4 - B ,B — A}|
— Hardness for {A - B,B — A} is easy
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Noisy Data as a Noisy Channel

The Probabilistic Unclean Data (PUD) model [DeSa-llyas-K-Ré-Rekatsinas-18]
« Examples:

= HoloClean [Rekatsinas-Chu-llyas-Ré-17]
= HoloDetect [Heidari-McGrath-llyas-Rekatsinas-19]

- =

Intension v\ Reallzatlon
Probabilistic v/' Probabilistic */ D
Data Generator ~—— / Noise Generator m

____________



PUD Example 1: Update Repairs

¥ Intention Realization

e
S~ % —
Probabilistic [> ~ [> Probabillistic ] [> \—%
Data Generator — Noise Generator '+ =<
« Uniform, i.i.d. tuple Randomly change
generation cell values

« Markov logic (factors) for
weak constraints



-50

person — birthCity birthCity — birthCountry

_ Y, -5
Y .
Weak constraints

Markov Logic:  Pr(D") ~ exp(Z penatlies(D"))

person birthCity  birthCountry
4 A D LA UsA | )

: ouglas
Intention -50
Douglas Tampa USA '
Probabilistic < i > b
Khan Ghajar Lebano
Data Generator -5
\_ / Khan Ghajar Israel -
e . ) @
Reallzathn person birthCity  birthCountry
Probabillistic Douglas LA USA )
Noise Generator
\_ / Douglas Tampa USA > D
Khan Ghajar Lebanon
Khan Rajar |srael J




PUD Example 2: Subset Repairs

¥ Intention Realization

e
S 2 % —
Probabilistic [> ~ [> Probabillistic ] [> \—%
Data Generator — Noise Generator '+ =<
« Uniform, 1.i.d. tuple Randomly add
generation new tuples

« Markov logic (factors) for
weak constraints



-50

person — birthCity

birthCity — birthCountry

-5
Pr(D") ~ exp(Z penatlies(D"))
person birthCity birthCountry
p ~ Douglas A [ UsA AN
INntention Douglas Tampa | USA
Probabilistic Khan Ghajar Lebanon g >D’
K Data Generator ) Khan Ghajar 50 Israel >D
Khan NYC | USA Yy
4 . )
Realization Douglas NYC NY
Probabillistic . .
- Noise Generator y A Ghajar Syria J




Fundamental Problems

Problem

Deterministic Variant

Most Likely Intent

Repair generation

Prob. Query Answering

Consistent Query Answering,
repair counting

Parameter Learning

N

\ xPr(a € Q(D"))

Intension | /. sl: Realization
Probabilistic \5/ Probabilistic
Data Generator \v / Noise Generator
— argmax,, Pr(D") ::/ .
="p Generalizes several

studied problems —




Probabilistic Duplicates [Andritsos-Fusman-Miller-06]

person — birthCity, birthState

person birthCity birthState
. { Cullen Douglas LA CA 0.6
~ disjoint
Cullen Douglas Tampa FL 0.4
. disjoint <_|  Marion Jones LA CA 1.0
indep. <
~ Irene Tedrow NYC NY 0.3
L Irene Tedrow LA FL 0.4
 digjoint <
Irene Tedrow Hollywood FL 0.2
~ lrene Tedrow Hollywood CA 0.1

Later termed Block-Independent Databases (BID) [Dalvi-Ré-Suciu-11]



Beyond Key Constraints?

person — birthCity
birthCity — birthState

person birthCity birthState
Cullen Douglas LA CA
Cullen Douglas Tampa FL
Marion Jones LA CA
Irene Tedrow NYC NY
Irene Tedrow LA FL
lrene Tedrow Hollywood FL
Irene Tedrow Hollywood CA

[Gribkoff-VanDenBroeck-Suciu-14]



Approach 1: Repair as Markov Chain

Idea: Iteratively select
violations and fix, randomly

» [Beskales-llyas-Golab-10] %ﬁ
« [Yakout+13] (SCARE system)

. [Calautti—Libkin—PierisM\

L — ——

N

ANSYAN
@@ﬂ@@@%
== ==

—

——

AN

== ==

v v
e — . —




Approach 2: TID Conditioning

Pe(0) = | [p0) x | |a-p@)

tebDr t&Dy
person city state
Cullen LA CA 0.6 Cullen 9 0.3
Cullen Tampa FL 0.4 Cullen 5 0.7
Marion LA CA 1.0 Marion 8 1.0
Irene NYC NY 0.3 Irene 9 0.8

[deRougemont-95] [Gradel-Gurevich-Hirsch-98] [Dalvi-Suciu-04]

Tuple-Independent Database

[Gribkoff-VanDenBroeck-Suciu-14]



Constrained TID

person — birthCity
birthCity — birthState

person birthCity birthState
Cullen Douglas LA CA 0.6
Cullen Douglas Tampa FL 0.7
Marion Jones LA CA 0.9
Irene Tedrow NYC NY 0.6
Irene Tedrow LA FL 0.9
Irene Tedrow Hollywood FL 0.5
Irene Tedrow Hollywood CA 0.8

p(D") = Pr(D"|C)

Computational problem: find a most probable D' (MPD)

[Gribkoff-VanDenBroeck-Suciu-14]



MPD

person — birthCity
birthCity — birthState

factor p
0.7 Cullen Douglas Tampa FL 0.7
0.9 Marion Jones LA CA 0.9

1-0.6 0.6

1-0.9 , Ar % 74 0.9

1-05 | % 7 0.5
0.8 Irene Tedrow Hollywood CA 0.8

1 Can compute efficiently?

max ([ [ro x| Ja-»w)

consistent D" ™ tepy teDr

[Gribkoff-VanDenBroeck-Suciu-14]



MPD Complexity

e [Gribkoff-VanDenBroeck-Suciu-14] studied the
computation of an MPD in the case of FDs

® They covered the case of unary FDs (single-
attribute on the |hs)
— With a gap remaining

e [hey left open the case of a general set of FDs
(and the remainder of the unary case)

® |nterestingly, the open problem has been
resolved in a different context

— ... that we have seen already!



THEOREM [Livshits-K-Roy-18]

Fix any set of FDs. The following are equivalent (under
standard complexity assumptions):

1. An MPD can be found in poly-time

2. The measure repair_cost(Z,:) can be computed (and
a cardinality repair can be found) IN POly-time

COROLLARY

Fix any set of FDs. The following are equivalent (under
standard complexity assumptions):

1. An MPD can be found in poly-time

2. The FD set can be simplified until emptied
according to the simplification process of Livshits+




Hardness of Constraints

e Recall that we started with the problem of finding
a most likely repair of a PUD

® [he previous results cover the case where
constraints are hard constraints

o |Vhat about soft constraints?

o Still largely open, yet considerable progress
— [Carmeli-Grohe-K-Livshits-Tibi-21]



MPD for Weak Constraints

MPD. maX(HP(t) X 1_[(1 —P(t)))

consistent D" ™ tepy teDr
ot max H w(t) H 1_[ 1
constraints: L1 cost(e)
, teD/ FD ¢ violations

Cullen ACM CA

O
Cullen EEE | FL [—( )
Q person — company Marion ACM | CA ‘Q
Q company — state Irene IEEE | NY 4@
Irene ACM | FL | )
Irene LNCS | FL | )




Example: “Liberal” Matching

 We need to select a subset of
Q\ the relationships
0@)  We pay a cost c(e) for denying

each relationship e

« We pay a cost ¢, for each <

c(e9)
8\ - We pay a cost ¢, for each 8>

« Goal: least-cost liberal matching

Algorithm via minimum-cost maximum flow
[Carmeli-Grohe-K-Livshits-Tibi-21]



Algorithm: Network Flow with Costs

c=20 : c=0 C(Uéava): ; C(Ug7ub)ic(ub7ui): Ce=0
(1 — Dwy, = —Wwy i(i_l)wm

* Min-cost max-flow: Given a network with capacities and costs on
edges, find a maximal source-to-sink flow with a minimal cost

« Solvable in polynomial time, including the integral variant (capacities
and flow are all integers) [Ahuja-Magnanti-Orlin-93]
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Usage of Inconsistency Measures

000

@ O O ([

]

Notions of soft Progress indication
(weak/approx) for data repairing
constraints Processes

~ N
@_

Attribution of
responsibility to

K inconsistency J




Background: Explaining Query Answers

Query q(x)

|

Output table

,"I Alice l\ t

Lo " Bob s =
e Carol e .
Heat map of Shapely values Dive %
over input tables fort i %
Buyer Item Category o ) “a

2, Gucisoho
a, | Alice iPhone 13 Electronics
a; | Bob iPhone 13 Electronics
a, | Bob AirJordan11 Fashion
dg | Dave Rolex Explorer  Fashion
a, | Dave Gucci Soho Fashion

ShapGraph, SIGMOD-22 Demo
[Davidson-Deutch-Frost-K-Koren-Monet-22]



Background: Explaining Query Answers

e Which DB tuples explain a query answer?
Quantify each tuple’s responsibility

e \arious past proposals

— Counterfactual analysis [Meliou+10] [Freire+15]
= Minimal change for the tuple to matter [Chockler-Halpern04]

— Causal effect [Salimi+16]
» Based on probabilistic databases

— Shapley value [Livshits+20] (next)

¢ |f the query asks about inconsistency, we get to
attribute a responsibility to each tuple
— In turn, can be used to rank tuples for inspection / fix

® [his query can be any inconsistency measure



The Shapley Value

e A widely known profit-sharing formula in

cooperative game theory by Shapley
— [L.S. Shapley: A value for n-person games, 1953] [Roth-88]

e [heoretical justification: unigue modulo
rationality desiderata

e Applied in various areas:
— Pollution responsibility in environmental management
— Influence measurement in social network analysis
— |dentifying candidate autism genes
— Bargaining foundations in economics
— Takeover corporate rights in law
— Explanations (local) in machine learning
— Explanations in databases




Shapley Definition

@ @ ®
ee [
. Set A of players

Wealth function v: P(4) — R

o
o ®
3 o 7

How to share the wealth among the players?

B! (Al = |B| = 1)!

Shapley(4, v,a) = Vit

BcA\{a}

(v(B Uf{a}) — v(B))



Shapley Explained

K
® O O
i) Set A of players
_ play
@ ~ ™~ N\ +5 )
3 5 5 12 17
&~/ J
S )

|B|! (|A] — |B| — 1)!
|Al!

Shapley(4, v,a) = (v(B Uf{a}) — v(B))

BcA\{a}

Shapley value: expected delta




Instatiations of the Shapley Value

Set A of players

Features Prediction
SHAP v X
[Lundberg-Lee-17]

Wealth v: P(A) = R

Tuples Answer
Query
[Deutch+22]

[Livshits+20]

[Hunter-Konieczn-18]

Tuples Inconsistency’ \jeasure
[Livshits-K-21]

How to share wealth among players?

12




Problem: Shapley Calculation

Compute a Shapley Value for Inconsistency

Params: Relation schema S ; set X of constraints ;
" inconsistency measure I

Input: Relation D over S ; tuple t of D

Goal: Compute the Shapley value of t under I(2, D)




Example 1: Number of Violations

Easily computable
coefficients

ID|-1
Shapley(D, t) = Z - [E[#violations of t w/ random k facts]
k=0

Facts in conflict with t

|D]-1
= c, - E[#facts fromm—subsﬂ

AN
Y

Simple combinatorics

)

x‘
Il




Example 2: Number of Problematic Tuples

Easily computable

Shapley(D, t) coefficients

|D]-1

= 2 + ( E[#problematic in random k facts and t]

k=0
—[E[#problematic in random k facts excluding t] )

E[#problematic among random k facts]

= E[ Y.cep 1[s is selected together with some conflict s'] |.
Linearity of

expectation _ |
= Y.cep Pr(s is selected together with some conflict s")

Facts in
= YD PLI‘(S and at least one of re selecte% conflict

Y with s
Simple combinatorics




Complexity Picture

. No Ihs chain,
Measure Ihs chain
tractable rep_cost
drastic PTIME FP*P-complete
#repairs PTIME FP*P-complete Next
repair_cost PTIME NP-hard
#violations PTIME
#problematic PTIME




Hardness Technique 1: Measure Hardness

Measures: #repairs , repair_cost

e (Consider the cooperative game with the set A of players
and utility v

e A general property of the Shapley values is that the sum
of values is equal to the overall utility:

Yaea Shapley(4,v,a) = v(A)

e Hence, from the Shapley values of facts we can compute
the inconsistency measure over the whole database

e Conclusion 1: If X is not an Ihs-chain (u.t.e.), then Shapley
value is #P-hard for #repairs

e (Conclusion 2: If X is not emptied by the simplification of
Livshits+, then Shapley value is NP-hard for repair_cost



Complexity Picture

. No Ihs chain,
Measure Ihs chain
tractable rep_cost |
drastic PTIME FP*P-complete Next
#repairs PTIME FP*P-complete
repair_cost PTIME NP-hard
#violations PTIME
#problematic PTIME




Hardness Technique 2: Linear Algebra (1)

Measure: drastic (1 / 0) Partial
— matchings

WREN  shapley(D,,t) ~ BT, | (g, k) -7+ (k+D-(m+7r—k—1)!
a 1

X={A->B,B - A}

. 9D1 _______ D2Dm+1
21
i e TRg i

Consistency =
being a partial
matching



Hardness Technique 2: Linear Algebra (2)

Measure: drastic (1 / 0)

Shapley(D;, t) = Yo IM(g, k)| r-(k+1)!-(m+r—k—1)!

( 1-1!m! 1-2!(m—1)! 1-(m+1)!0! rlM(g,O)P
2-1!(m—+1)! 2 - 2Im)! 2-(m+1)11! IM(g,1)|

\(m+1):-1!2m! (m—l—l)-:Z!(m—l)! (m+1) - (m+1)!m! kIM(:g,m)I,

S (" Shapley(Dy,t) )
| Shapley(D,,t)
0l 1 o Assume PTime B :
1! 2! . (m+1)! \Shapley(DmH, t))
n;z,! (m + 1)! 27'71! We can compute #partial-matchings

. of a bipartite graph... #P-complete!
Non-singular [Bacher-02]



Hardness Technique 3: Fact-Wise Reduction

Measure: drastic (1 / 0)

e \We showed hardness for {A - B,B — A}

¢ \\We need to show hardness for every set of FDs
that Is not an Ihs-chain

e But this, we get for free, since...

e [or the hardness of #repairs, we already showed
fact-wise reductions from {A - B ,B — A}



+ Approximation

Measure

lhs chain

No Ihs chain,

tractable rep_cost

drastic FP*P-complete
PTIME
approx
#repairs FP*P-complete
PTIME
approx
repair_cost STIME ‘ NP-hard
approx No FPRAS
#violations PTIME
#problematic PTIME

Would imply an FPRAS

for #MIS in a bipartite
graph — long standing
open problem



Approximation Algorithms

Measures: drastic ; cardinality

¢ |n the case of drastic and cardinality, a tuple can
iIncrease the measure by either 1 or O
— In the sampling-w/o-replacement trial

e Hence, the Shapley value of a fact is the
probabillity that it increases the measure

e An additive approx. is straightforward: average
over multiple trials

* [he additive approx. gives a multiplicative
approx. via the gap property that holds here:

If Shapley is nonzero, it is at least 1/poly



Explanation of Cleaning Algorithms

e Deutch et al. studied explanations for the actions

of black-box tools for data cleaning
— [Deutch-Frost-Gilad-Sheffer-CIKM21]

o Specifically,
— Why has this cell changed?
— Which components are most responsible to
the the cell value produced by the cleaner?
e [wWo types of components:
— Constraints (DCs)
— Cell values (non-null)



Instatiations of the Shapley Value

Features ML

Prediction
v X
Set A of players

Tuples DB Answer
- < Que |
e 6 N ry @
Tuples Inconsistency’ \jeasure
_

Cleaner

e N
&
® .
. ® Constraints
& B _
- Cleaning

Qc’[ion

Cleaner

[Deutch+21]
Nonnull cells

A

p

ction

Wealth v: P(A) - R
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Summary & Conclusions

Quantitative measurement of inconsistency arise in
various situations in database management
— Classic/recent, implicit/explicit

We discussed 3 use cases: notions of soft constraints,
progress indication, attribution of responsibility to noise

Interesting computational challenges, good understanding
of complexity in limited settings
— Functional dependencies (sometimes denial constraints) and
tuples deletions
Connections to probabilistic databases
— Fundamental problems coincide, unified models studied



Some Open Problems (1)

e —mpirical user studies on how measurements
help quality management / data prep

— “Data preparation accounts for about 80% of the work
of data scientists” - Forbes

e Repairing model — measures heavily based on
tuple deletion
— Insufficient theory about cell updates
— For example, the complexity of repair-cost?
— What would be good measures”



Some Open Problems (2)

e Beyond anti-monotonic — what about foreign

keys” Inclusion constraints?
— Then, we should also consider tuple addition

e Shapley values — we lack approximation
algorithms and practical techniques
— Approximation for Shapley value for repair-cost

— Knowledge compilation”? (e.g., via provenance tracking
using ProvSQL as in DB queries [Deutch+22] )

e Soft constraints — we know the complexity of very
few cases, basic problems still open



Thank you!
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