
Enumeration

Nicole Schweikardt

Humboldt-Universität zu Berlin

EDBT-Intended Summer School 2022: Data and Knowledge

Bordeaux, July 5, 2022



Databases and Queries
▶ σ is a finite relational signature

▶ a database (db) D is a finite relational σ-structure

▶ adom(D) is this structure’s universe (“active domain”)

▶ fix a countably infinite set dom (“domain”) and assume w.l.o.g. that
adom(D) ⊆ dom

▶ FO is first-order logic of signature σ

▶ CQ (“conjunctive queries”) are FO-formulas of the form

∃y1 · · · ∃yℓ
(
R1(...) ∧ · · · ∧ Rs(...)

)
▶ Result of query φ on db D:

φ(D) := { α : free(φ) → adom(D) : (D, α) |= φ }
= { a ∈ adom(D)k : D |= φ(a) }

where {x1, . . . , xk} = free(φ)
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Query evaluation

Consider a query language L (e.g., FO, CQ)

Let φ(x1, . . . , xk) be a query formulated in L.
Let D be a db.

Task:
Evaluate φ on D, i.e., compute the query result

φ(D) = { α : free(φ) → adom(D) : (D, α) |= φ }
= { a ∈ adom(D)k : D |= φ(a)}

Special case free(φ) = ∅ (i.e., k = 0): Boolean queries:
Evaluate φ on D means Decide if D |= φ
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Complexity of query evaluation

In his STOC’82 paper, Moshe Vardi introduced the notions
combined complexity

: Measure the complexity of evaluating φ
on D in terms of the sizes of φ and D.

and data complexity

: Assume the query φ to be fixed. Measure the
complexity of evaluating φ on D only in terms of the size of D.

Typical results of Finite Model Theory and Database Theory:

▶ Boolean Conjunctive Queries: data complexity is in AC0,
combined complexity is NP-complete [Chandra & Merlin ’77]

▶ Boolean First-Order Queries: data complexity is in AC0, combined
complexity is PSPACE-complete [Stockmeyer ’74, Vardi ’82]

▶ Boolean Queries of Least-Fixed Point Logic LFP: data complexity is
PTIME-complete, combined complexity is EXPTIME-complete
[Immerman ’82, Vardi ’82].

CAVEAT: These notions & results do not handle updates of the db!
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A typical scenario for DB-systems
▶ Input:

▶ Database D

of degree ⩽ d f (φ, d) =

▶ query φ(x1, . . . , xk)

3-exp(||φ||+ lg lg d)

▶ Preprocessing:
Build a suitable data structure that represents D and φ(D)

▶ Output:
For Boolean queries:
▶ Decide if D |= φ

For k-ary queries:
▶ Compute the number of tuples in φ(D)
▶ Test for a given tuple a whether a ∈ φ(D)
▶ Enumerate the tuples in φ(D)

▶ without repetition
▶ with guarantee on the max. delay between output tuples

▶ Dynamic setting:

update data structure in

Tuples may be inserted into or deleted from D

Similar results for FO with counting FOC(P) [Kuske, S., LICS’17].
Future task: Revisit other results on FO model checking in the dynamic
setting!

– Thank you! –
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Constant delay enumeration after linear time preprocessing

▶ Let φ be a fixed query

▶ Let C be a class of databases

▶ Goal:
Find an algorithm which, upon input of a db D,
uses preprocessing time (pseudo-)linear in ||D|| and then
enumerates φ(D) with delay O(1)

▶ Question:
For which φ,C is this possible?

linear : O(N)

pseudo-linear : ∀ ϵ > 0 ∃ algorithm with runtime O(N1+ϵ)
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Positive Results for FO-Queries (static setting: without updates)
Constant delay enumeration after pseudo-linear time preprocessing is
possible for all FO-queries φ on db-class C , if

▶ C has bounded degree [Durand, Grandjean 2007]

▶ C has bounded tree-width [Bagan 2006]

▶ C has bounded expansion [Kazana, Segoufin 2013]

▶ C has locally bounded expansion [Segoufin, Vigny 2017]

▶ C is nowhere dense [S., Segoufin, Vigny 2018]

For any subgraph-closed class C that is not nowhere dense, evaluation of
Boolean FO-queries is not possible in time f (||φ||)||D||O(1)

(assuming FPT ̸= W[1]) [Kreutzer 2011, Dvořák, Král, Thomas 2010]

▶ C has low degree [Durand, S., Segoufin 2014]

i.e., for each δ > 0, all sufficiently large D in C have degree ⩽ ||D||δ.
Some such C are not nowhere dense (and not subgraph-closed).

Open: To which extensions of FO can this be generalised?
Which results can be extended to the dynamic setting?
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Bounded degree databases

Graph G = (V ,E ):

degree of a node v : the number of neighbours of v in G
degree of G : max {degree(v) : v ∈ V }

Database D:

degree of D : degree of the Gaifman graph of D

Gaifman graph of D:

the graph G = (V ,E ) with V = adom(D) and an edge between
two distinct nodes a, b ∈ V iff some tuple in some relation of
D contains a and b
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FO query evaluation on dbs of degree ⩽ d

Boolean queries:

▶ evaluation in linear time [Seese 1996]

▶ evaluation in time f (φ, d)||D||, for [Frick, Grohe 2004]

f (φ, d) = 2d
2O(||φ||)

= 3-exp(||φ||+ lg lg d)

and the 3-fold exponential blow-up is unavoidable assuming
FPT ̸= AW[∗].

Non-Boolean queries:

▶ constant-delay enumeration with linear-time preprocessing
[Durand, Grandjean 2007]

▶ enumeration with delay f (φ, d) and preprocessing f (φ, d)||D||,
where f (φ, d) = 3-exp(||φ||+ lg lg d) [Kazana, Segoufin 2011]

Generalisation to the dynamic setting (update time f (φ, d)) and
FO+MOD [Berkholz, Keppeler, S. 2017] and FOC(P) [Kuske, S. 2017]
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FO+MOD queries and FOC(P) queries
Movie
Name Actor
Alien Sigourney Weaver
Blade Runner Harrison Ford
Blade Runner Sean Young
Brazil Jonathan Pryce
Brazil Kim Greist
Casablanca Humphrey Bogart
Casablanca Ingrid Bergmann
Gravity Sandra Bullock
Gravity George Clooney
Resident Evil Milla Jovovich
Terminator Arnold Schwarzenegger
Terminator Linda Hamilton
Terminator Michael Biehn

...
...

Is the number of movies with
Ingrid Bergmann even?

In FO+MOD:

∃0 mod 2 y Movie (y , "Ingrid Bergmann")

In FOC(P):

Peven
(
#(y).Movie (y , "Ingrid Bergmann")

)

FO+MOD = extension of first-order logic with
modulo-counting quantifiers ∃i modm y ψ(y , z)

Let P be a collection of numerical predicates. E.g., P may contain the
predicates JPevenK = {i ∈ Z : i is even} and JP⩽K = {(i , j) ∈ Z2 : i ⩽ j}.
FOC(P) = extension of first-order logic with formulas of the form
P(t1, . . . , tr ) for P ∈ P of arity r , and where
each ti is a counting term built using integers, +, ·, and
basic counting terms t(x) of the form #y .ψ(x , y)
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Hanf normal form for FO+MOD
▶ A type τ with k centres and radius r :

Example type with
k = 4 centres
and radius r = 1

▶ ND
r (b) is the induced substructure of D on

ND
r (b) = ND

r (b1) ∪ · · · ∪ ND
r (bk)

where

ND
r (bi ) = {a ∈ adom(D) : distD(bi , a) ⩽ r}

▶ Sphere-formula sphτ (x):(
D, a

)
|= sphτ (x) ⇐⇒

(
ND

r (a), a
) ∼= τ
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Hanf normal form for FO+MOD
A Hanf normal form ψ(x) is a Boolean combination of

▶ sphere-formulas sphρ(x) and

▶ Hanf-sentences ∃⩾my sphτ (y) and ∃i modm y sphτ (y)
where τ is a type with 1 centre and radius r .

Two queries φ(x) and ψ(x) are d-equivalent iff

(D, a) |= φ ⇐⇒ (D, a) |= ψ

for all dbs D of degree ⩽ d .

Theorem (Heimberg, Kuske, S., 2016)
There is an algorithm which receives as input a degree bound d ⩾ 2 and
a FO+MOD-formula φ(x), and constructs a d-equivalent formula ψ(x)
in Hanf normal form.
The algorithm’s runtime is f (φ, d) = 3-exp(||φ||+ lg lg d).
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Boolean queries under updates f (φ, d) = 3-exp(||φ||+ lg lg d)

Observation: There is a dynamic algorithm that receives as input
▶ a degree bound d ⩾ 2,
▶ a Boolean FO+MOD-query φ, and
▶ a db D of degree ⩽ d ,

and computes
▶ within f (φ, d)||D|| preprocessing time a data structure
▶ that can be updated in time f (φ, d)

and allows to return the query result φ(D) with answer time O(1).

Proof Idea:

1. Transform φ into Hanf normal form ψ.

2. For each type τ occurring in ψ, store the number Aτ of elements in
adom(D) whose r -neighbourhood has type τ .

3. Inserting/deleting a tuple in D only affects the type of a fixed
number of elements in adom(D) ⇝ update affected Aτ -values.
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Enumeration under updates f (φ, d) = 3-exp(||φ||+ lg lg d)

Theorem (Berkholz, Keppeler, S. 2017): There is a dynamic algorithm
that receives as input
▶ a degree bound d ⩾ 2,
▶ a k-ary FO+MOD-query φ(x), and
▶ a db D of degree ⩽ d ,

and computes
▶ within f (φ, d)||D|| preprocessing time a data structure
▶ that can be updated in time f (φ, d)

and allows to enumerate φ(D) with delay O(k2).
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Proof idea: Reduction to coloured graphs

Input:
Database D

FO+MOD-query φ(x1, ..., xk)

Same approach as in [Durand, S., Segoufin 2014],
but now we have to take care of updates!
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Representing Databases by Coloured Graphs
φ(x1, . . . , xk) ≡d

∨
i∈I

sphτi (x1, . . . , xk) & sentences

When a tuple is inserted/deleted in D, update the coloured graph G.
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Representing Databases by Coloured Graphs
φ(x1, . . . , xk) ≡d

∨
i∈I
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Enumeration of ψk(G) with delay O(k3d)

ψk(x1, . . . , xk) :=
k∧

i=1

Ci (xi ) ∧
∧
i ̸=j

¬E (xi , xj)

for all u1 ∈ CG
1 do

Enum(u1).
Output EOE.

function Enum(u1, . . . , ui )
if i = k then

Output (u1, . . . , ui )
else

for all ui+1 ∈ CG
i+1 do

if ui+1 /∈
⋃i

j=1 N
G(uj) then

Enum(u1, . . . , ui , ui+1)

Nicole Schweikardt (HU Berlin) Enumeration 19/ 42



Enumeration of ψk(G) with delay O(k3d)

ψk(x1, . . . , xk) :=
k∧

i=1

Ci (xi ) ∧
∧
i ̸=j

¬E (xi , xj)

for all u1 ∈ CG
1 do

Enum(u1).
Output EOE.

function Enum(u1, . . . , ui )
if i = k then

Output (u1, . . . , ui )
else

for all ui+1 ∈ CG
i+1 do

if ui+1 /∈
⋃i

j=1 N
G(uj) then

Enum(u1, . . . , ui , ui+1)

Nicole Schweikardt (HU Berlin) Enumeration 19/ 42



Enumeration of ψk(G) with delay O(k3d)

ψk(x1, . . . , xk) :=
k∧

i=1

Ci (xi ) ∧
∧
i ̸=j

¬E (xi , xj)

for all u1 ∈ CG
1 do

Enum(u1).
Output EOE.

function Enum(u1, . . . , ui )
if i = k then

Output (u1, . . . , ui )
else

for all ui+1 ∈ CG
i+1 do

if ui+1 /∈
⋃i

j=1 N
G(uj) then

Enum(u1, . . . , ui , ui+1)

Nicole Schweikardt (HU Berlin) Enumeration 19/ 42



Enumeration of ψk(G) with delay O(k3d)

ψk(x1, . . . , xk) :=
k∧

i=1

Ci (xi ) ∧
∧
i ̸=j

¬E (xi , xj)

Problem: Too few blue nodes

for all u1 ∈ CG
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Handling small colours

A colour ℓ ∈ {1, . . . , k} is small :⇐⇒
∣∣CG

ℓ

∣∣ ⩽ dk

W.l.o.g. let I = {1, . . . , s} be the set of small colours (with s ⩽ k).

S :=

{
(u1, . . . , us) ∈ CG

1 × · · · × CG
s :

(uj , uj ′) /∈ EG ,
for all j ̸= j ′

}

The set S can be computed in time O((dk)k).

s ∈ S ⇐⇒ ex. a such that (s, a) ∈ φ(D)
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The enumeration procedure

1: for all (u1, . . . , us) ∈ S do
2: Enum(u1, . . . , us).
3: Output the end-of-enumeration message EOE.
4:
5: function Enum(u1, . . . , ui )
6: if i = k then
7: output the tuple (u1, . . . , ui )
8: else
9: for all ui+1 ∈ CG

i+1 do
10: if ui+1 /∈

⋃i
j=1 N

G(uj) then
11: Enum(u1, . . . , ui , ui+1)

where NG(uj) := {v ∈ V G : (uj , v) ∈ EG}.

Nicole Schweikardt (HU Berlin) Enumeration 21/ 42



ψk(x1, . . . , xk) :=
k∧

i=1

Ci (xi ) ∧
∧
i ̸=j

¬E (xi , xj)

S large colours

...
...

...
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ψk(x1, . . . , xk) :=
k∧

i=1

Ci (xi ) ∧
∧
i ̸=j

¬E (xi , xj)

S large colours

...
...

...

update step: Insert a node into a colour Cℓ with |CG
ℓ | = dk
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Enumeration under updates f (φ, d) = 3-exp(||φ||+ lg lg d)

Theorem (Berkholz, Keppeler, S. 2017): There is a dynamic algorithm
that receives as input
▶ a degree bound d ⩾ 2,
▶ a k-ary FO+MOD-query φ(x), and
▶ a db D of degree ⩽ d ,

and computes
▶ within f (φ, d)||D|| preprocessing time a data structure
▶ that can be updated in time f (φ, d)

and allows to enumerate φ(D) with delay O(k2).

Proof Idea:
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For enumeration with delay O(k2): Use the skip-pointers that were
introduced by [Durand, S., Segoufin 2014] for the static setting and lift
the approach to the dynamic setting.
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and computes
▶ within f (φ, d)||D|| preprocessing time a data structure
▶ that can be updated in time f (φ, d)

and allows to enumerate φ(D) with delay O(k2) /////////f (φ, d) O(k2).

For enumeration with delay O(k2): Use the skip-pointers that were
introduced by [Durand, S., Segoufin 2014] for the static setting and lift
the approach to the dynamic setting.

For the generalisation to FOC(P) (FO + counting + numerical predicates
from P) use a corresponding HNF for that logic [Kuske, S. 2017].
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Positive Results for FO-Queries (static setting: without updates)
Constant delay enumeration after pseudo-linear time preprocessing is
possible for all FO-queries φ on db-class C , if

▶ C has bounded degree [Durand, Grandjean 2007]

▶ C has bounded tree-width [Bagan 2006]

▶ C has bounded expansion [Kazana, Segoufin 2013]

▶ C has locally bounded expansion [Segoufin, Vigny 2017]

▶ C is nowhere dense [S., Segoufin, Vigny 2018]

For any subgraph-closed class C that is not nowhere dense, evaluation of
Boolean FO-queries is not possible in time f (||φ||)||D||O(1)

(assuming FPT ̸= W[1]) [Kreutzer 2011, Dvořák, Král, Thomas 2010]

▶ C has low degree [Durand, S., Segoufin 2014]

i.e., for each δ > 0, all sufficiently large D in C have degree ⩽ ||D||δ.
Some such C are not nowhere dense (and not subgraph-closed).

Open: To which extensions of FO can this be generalised?
Which results can be extended to the dynamic setting?
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Overview

Introduction

First-Order Queries

Conjunctive Queries

Final Remarks
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Constant delay enumeration after linear time preprocessing

▶ Let φ be a fixed query

▶ Let C be a class of databases

▶ Goal:
Find an algorithm which, upon input of a db D,
uses preprocessing time linear in ||D|| and then
enumerates φ(D) with delay O(1)

▶ Question:
For which φ,C is this possible?

Now: φ is a CQ φ(x1, . . . , xk ) = ∃y1 · · · ∃yℓ
(
R1(. . .) ∧ · · · ∧ Rs(. . .)

)
C is the class of all dbs

Obvious condition: Boolean φ must be tractable in linear time

⇝ restrict attention to acyclic CQs [Yannakakis 1981]
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Examples (static setting for acyclic CQs)

φS-E -T (x , y) := S(x) ∧ E (x , y) ∧ T (y)

can be enumerated with constant delay after linear time preprocessing:
▶ For input db D = (adom(D),ED ,SD ,TD)

▶ Compute E1 := {(x , y) ∈ ED : x ∈ SD}
▶ Compute E2 := {(x , y) ∈ E1 : y ∈ TD}
▶ Output E2

Same approach works for the acyclic CQ

φE -T (x) := ∃y
(
E (x , y) ∧ T (y)

)
.

But apparently not for the acyclic CQ

φAB(x , y) := ∃z
(
A(x , z) ∧ B(z , y)

)
otherwise, Boolean Matrix Multiplication (for two n × n matrices A and
B) could be solved in time O(n2), contradicting an algorithmic
assumption. n = |adom(D)|
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Characterisation for the static setting

Definition: A CQ φ is acyclic if there exists a join tree, i.e., a tree t
whose nodes are exactly the atoms of φ, and where for any two nodes
u, v the following is true for every common variable y of u and v :
y occurs in every node on the path between u and v in t.

Definition: φ is free-connex if the following two queries are acyclic:
φ and the query φ′ obtained from φ by adding an atom of the form R(x)
that contains all free variables of φ [Brault-Baron 2013]

Theorem (Bagan, Durand, Grandjean 2007)
Let φ(x1, . . . , xk) be an acyclic CQ.

If φ is free-connex, then φ(D) can be enumerated with constant delay
after linear preprocessing.

If φ is self-join free and not free-connex, then it is not possible to
enumerate φ(D) with constant delay after linear preprocessing, unless
Boolean Matrix Multiplication can be done in time O(n2).
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Dynamic setting

Queries that are easy in the static setting
can be difficult for the dynamic setting!

Example: φE -T (x) := ∃y
(
E (x , y) ∧ T (y)

)
.

Why? — See the next few slides:

Introduce the notion of q-hierarchical CQs, which captures the
easy CQs in the dynamic setting
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q-hierarchical CQs
Dalvi & Suciu (2007) introduced the hierarchical CQs to characterise the
Boolean CQs that can be answered in PTIME on probabilistic dbs.

q-hierarchical CQs are hierarchical CQs where, additionally, the
quantifiers respect the query’s hierarchical form.

Definition: A CQ φ(z1, . . . , zk) is q-hierarchical if for all variables x , y
of φ the following is satisfied:

(i) atoms(x) ⊆ atoms(y) or atoms(y) ⊆ atoms(x) or
atoms(x) ∩ atoms(y) = ∅, and

(ii) if atoms(x) ⊊ atoms(y) and x ∈ free(φ), then y ∈ free(φ).

Queries that are not q-hierarchical:
ψS-E -T () := ∃x ∃y

(
S(x) ∧ E (x , y) ∧ T (y)

)
φS-E -T (x , y) := S(x) ∧ E (x , y) ∧ T (y)

φE -T (x) := ∃y
(
E (x , y) ∧ T (y)

)
x y

x ∃y

A q-hierarchical query:

θE -T (y) := ∃x
(
E (x , y) ∧ T (y)

)
∃x y
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Intractability result for enumerating CQs that are not q-hierarchical
. . . is subject to suitable algorithmic conjecture

The OMv-problem: [Henzinger et al. 2015]
Input: a Boolean n × n-matrix M and

a stream v1, . . . , vn of n-dimensional Boolean vectors
Task: output Mvℓ before accessing vℓ+1

OMv-Conjecture: For every ϵ > 0, there is no algorithm that solves
the OMv-problem in total time O(n3−ϵ)
Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

Theorem (Enumeration): [Berkholz, Keppeler, S., 2017]
Let ϵ > 0 and let φ(x) be a self-join free CQ that is
not q-hierarchical.
Then, there is no algorithm with arbitrary preprocessing time and
tu = O(n1−ϵ) update time that enumerates φ(D) with
td = O(n1−ϵ) delay, unless the OMv-conjecture fails.

Proof idea for φE -T (x) := ∃y
(
E (x , y) ∧ T (y)

)
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Proof idea for φE -T (x) := ∃y
(
E (x , y) ∧ T (y)

)
A lower bound for enumerating via OMv

Input: Boolean n × n matrix M and stream v1, . . . , vn of n-dimensional
Boolean vectors.

Task: output Mvℓ before accessing vℓ+1

Given n × n matrix M, let

▶ ED0 := { (i , j) ∈ [n]2 : M(i , j) = 1 }, TD0 := ∅

Create data structure for D0 in time n2 · n1−ϵ.

Given n-dim. vector vℓ, update

▶ TDℓ := { i ∈ [n] : vℓ(i) = 1 }.

in time n · n1−ε. For uℓ := Mvℓ we have:

▶ φE -T (Dℓ) = { i ∈ [n] : uℓ(i) = 1 }

and can output uℓ after enumerating φE -T (Dℓ) in time n · n1−ε.
This solves OMv in total time O(n3−ε) E
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Intractability result for Boolean CQs that are not q-hierarchical

The OuMv-problem: [Henzinger et al. 2015]
Input: a Boolean n × n-matrix M and

a stream u1,v1, . . . , un,vn of n-dimensional Boolean vectors
Task: output (uℓ)

⊺
Mvℓ before accessing uℓ+1, vℓ+1

OuMv-Conjecture: For every ϵ > 0, there is no algorithm that
solves the OuMv-problem in total time O(n3−ϵ)

Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

Theorem (Boolean): [Berkholz, Keppeler, S., 2017]
Fix an ϵ > 0 and let φ be a Boolean CQ whose homomorphic core
is not q-hierarchical.
Then, there is no algorithm with arbitrary preprocessing time and
tu = O(n1−ϵ) update time that answers φ(D) in time
ta = O(n2−ϵ), unless the OuMv-conjecture fails.

Proof idea for ψS-E -T := ∃x∃y
(
S(x) ∧ E (x , y) ∧ T (y)

)
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Intractability result for counting CQs that are not q-hierarchical

The OV-problem: [cf. R. Williams, 2005]
Input: two sets U and V of n Boolean vectors of dimension
d := ⌈log2 n⌉
Task: decide if there exist u ∈ U and v ∈ V with u

⊺
v = 0

OV-Conjecture: For every ϵ > 0, there is no algorithm that solves
the OV-problem in time O(n2−ϵ)

Theorem (Counting): [Berkholz, Keppeler, S., PODS’17]
Let ϵ > 0 and let φ(x) be a CQ whose homomorphic core is
not q-hierarchical.
Then, there is no algorithm with arbitrary preprocessing time and
tu = O(n1−ϵ) update time that computes |φ(D)| in time
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Proof idea for φE -T (x) := ∃y
(
E (x , y) ∧ T (y)

)
A lower bound for counting via OV

Left: n vertices for the n vectors u ∈ U
Right: d := ⌈log2 n⌉ vertices for vector-coordinates

u1 = (1, 0, 0)⊺

u2 = (1, 1, 0)⊺

u3 = (1, 0, 1)⊺

u4 = (0, 0, 1)⊺

u5 = (0, 1, 1)⊺

∣∣φE -T (Dℓ)
∣∣ = 4 =

∣∣{ ui : ui
⊺vℓ ̸= 0 }

∣∣

▶ for each vℓ ∈ V : update TDℓ in time d · n1−ϵ = ⌈log2 n⌉n1−ε

▶ there is ui ∈ U with ui
⊺vℓ = 0 ⇐⇒ |φE -T (Dℓ)| < n.

▶ finished for all vℓ ∈ V within time n · ⌈log2 n⌉n1−ε = n2−ε′ E
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Efficient evaluation of a fragment of CQs

Theorem (Upper bound) [Berkholz, Keppeler, S. 2017]:
For every CQ that is q-hierarchical, there is a dynamic data
structure that has constant update time and allows to

▶ answer a Boolean CQ,
▶ count the number of result tuples,
▶ enumerate the result relation with constant delay.
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q-hierarchical queries

φ(x , y , z) := R(x) ∧ E (x , y) ∧ F (x , z)

|φ(D)| =
∑

v∈RD |N+
E (v)| · |N

+
F (v)|

▶ COUNT: store |N+
E (v)|, |N+

F (v)|,
∑

v∈RD |N+
E (v)| · |N

+
F (v)|

▶ ENUM: store N+
E (v), N+

F (v) as lists with constant access,

ENUM:

for v ∈ RD report {v} × N+
E (v)× N+

F (v)

Lemma: A CQ φ(x) is q-hierarchical ⇐⇒
every connected component of φ(x) has a q-tree.
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Data structure for q-hierarchical queries
φ(x , y , z , y ′, z ′) =

(
Rxyz ∧ Rxyz ′ ∧ Exy ∧ Exy ′ ∧ Sxyz

)
x

y y′

z z′

▶ S(b, p, a),R(b, p, a),R(b, p, b),R(b, p, c) ∈ D, E (b, p) /∈ D

▶ INSERT E (b, p)
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Positive Results for FO-Queries (static setting: without updates)
Constant delay enumeration after pseudo-linear time preprocessing is
possible for all FO-queries φ on db-class C , if

▶ C has bounded degree [Durand, Grandjean 2007]

▶ C has bounded tree-width [Bagan 2006]

▶ C has bounded expansion [Kazana, Segoufin 2013]

▶ C has locally bounded expansion [Segoufin, Vigny 2017]

▶ C is nowhere dense [S., Segoufin, Vigny 2018]

For any subgraph-closed class C that is not nowhere dense, evaluation of
Boolean FO-queries is not possible in time f (||φ||)||D||O(1)

(assuming FPT ̸= W[1]) [Kreutzer 2011, Dvořák, Král, Thomas 2010]

▶ C has low degree [Durand, S., Segoufin 2014]

i.e., for each δ > 0, all sufficiently large D in C have degree ⩽ ||D||δ.
Some such C are not nowhere dense (and not subgraph-closed).

Open: To which extensions of FO can this be generalised?
Which results can be extended to the dynamic setting?
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Want to learn more about . . .

▶ enumeration for CQs ?

▶ Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt:
Constant delay enumeration for conjunctive queries: a tutorial.
ACM SIGLOG News 7(1): 4-33 (2020)

▶ the dynamic setting ? Check work by
▶ Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm

(SIGMOD’17)
▶ Dan Olteanu, Ahmet Kara et al. on factorised databases
▶ Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth:

Enumeration on Trees with Tractable Combined Complexity and
Efficient Updates. PODS 2019: 89-103

▶ enumeration for other data models ? Check recent work on
▶ regular document spanners: Florenzano et al. PODS’18, Amarilli et

al. ICDT’19, Schmidt & S. PODS’21&’22
▶ generalisations: Amarilli et al. PODS’22, Munoz & Riveros ICDT’22

– Thank you for your attention! –
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