Enumeration

Nicole Schweikardt

Humboldt-Universität zu Berlin

EDBT-Intended Summer School 2022: Data and Knowledge Bordeaux, July 5, 2022

- \blacktriangleright σ is a finite relational signature
- a database (db) D is a finite relational σ -structure
- adom(D) is this structure's universe ("active domain")

- \blacktriangleright σ is a finite relational signature
- a database (db) D is a finite relational σ -structure
- adom(D) is this structure's universe ("active domain")
- Fix a countably infinite set dom ("domain") and assume w.l.o.g. that adom(D) ⊆ dom

- σ is a finite relational signature
- a database (db) D is a finite relational σ -structure
- adom(D) is this structure's universe ("active domain")
- Fix a countably infinite set dom ("domain") and assume w.l.o.g. that adom(D) ⊆ dom
- **FO** is first-order logic of signature σ
- ► CQ ("conjunctive queries") are FO-formulas of the form

 $\exists y_1 \cdots \exists y_\ell \ (\ R_1(...) \land \cdots \land R_s(...) \)$

- σ is a finite relational signature
- a database (db) D is a finite relational σ -structure
- adom(D) is this structure's universe ("active domain")
- Fix a countably infinite set dom ("domain") and assume w.l.o.g. that adom(D) ⊆ dom
- **FO** is first-order logic of signature σ
- ► CQ ("conjunctive queries") are FO-formulas of the form $\exists y_1 \cdots \exists y_\ell \ (R_1(...) \land \cdots \land R_s(...))$

► Result of query φ on db D: $\varphi(D) := \{ \alpha : \operatorname{free}(\varphi) \to \operatorname{adom}(D) : (D, \alpha) \models \varphi \}$

Nicole Schweikardt (HU Berlin)

- σ is a finite relational signature
- a database (db) D is a finite relational σ -structure
- adom(D) is this structure's universe ("active domain")
- Fix a countably infinite set dom ("domain") and assume w.l.o.g. that adom(D) ⊆ dom
- **FO** is first-order logic of signature σ
- ► CQ ("conjunctive queries") are FO-formulas of the form $\exists y_1 \cdots \exists y_\ell \ (R_1(...) \land \cdots \land R_s(...))$

► Result of query φ on db D: $\varphi(D) := \{ \alpha : \operatorname{free}(\varphi) \rightarrow \operatorname{adom}(D) : (D, \alpha) \models \varphi \}$ $= \{ \overline{a} \in \operatorname{adom}(D)^k : D \models \varphi(\overline{a}) \}$ where $\{x_1, \dots, x_k\} = \operatorname{free}(\varphi)$

Nicole Schweikardt (HU Berlin)

Enumeration

Query evaluation

Consider a query language L (e.g., FO, CQ) Let $\varphi(x_1, \ldots, x_k)$ be a query formulated in L. Let D be a db.

Task:

Evaluate φ on D, i.e., compute the query result

$$\begin{split} \varphi(D) &= \{ \alpha : \operatorname{free}(\varphi) \to \operatorname{adom}(D) : (D, \alpha) \models \varphi \} \\ &= \{ \overline{a} \in \operatorname{adom}(D)^k : D \models \varphi(\overline{a}) \} \end{split}$$

Query evaluation

Consider a query language L (e.g., FO, CQ) Let $\varphi(x_1, \ldots, x_k)$ be a query formulated in L. Let D be a db.

Task:

Evaluate φ on D, i.e., compute the query result

$$\begin{split} \varphi(D) &= \{ \alpha : \mathsf{free}(\varphi) \to \mathsf{adom}(D) : (D, \alpha) \models \varphi \} \\ &= \{ \overline{a} \in \mathsf{adom}(D)^k : D \models \varphi(\overline{a}) \} \end{split}$$

Special case free(φ) = \emptyset (i.e., k = 0): Boolean queries: Evaluate φ on D means Decide if $D \models \varphi$

In his STOC'82 paper, Moshe Vardi introduced the notions combined complexity

and data complexity

In his STOC'82 paper, Moshe Vardi introduced the notions combined complexity: Measure the complexity of evaluating φ on *D* in terms of the sizes of φ and *D*. and data complexity

- In his STOC'82 paper, Moshe Vardi introduced the notions combined complexity: Measure the complexity of evaluating φ on *D* in terms of the sizes of φ and *D*.
- and data complexity: Assume the query φ to be fixed. Measure the complexity of evaluating φ on D only in terms of the size of D.

- In his STOC'82 paper, Moshe Vardi introduced the notions combined complexity: Measure the complexity of evaluating φ on *D* in terms of the sizes of φ and *D*.
- and data complexity: Assume the query φ to be fixed. Measure the complexity of evaluating φ on D only in terms of the size of D.

Typical results of Finite Model Theory and Database Theory:

 Boolean Conjunctive Queries: data complexity is in AC⁰, combined complexity is NP-complete [Chandra & Merlin '77]

- In his STOC'82 paper, Moshe Vardi introduced the notions combined complexity: Measure the complexity of evaluating φ on *D* in terms of the sizes of φ and *D*.
- and data complexity: Assume the query φ to be fixed. Measure the complexity of evaluating φ on D only in terms of the size of D.

Typical results of Finite Model Theory and Database Theory:

- Boolean Conjunctive Queries: data complexity is in AC⁰, combined complexity is NP-complete [Chandra & Merlin '77]
- Boolean First-Order Queries: data complexity is in AC⁰, combined complexity is PSPACE-complete [Stockmeyer '74, Vardi '82]

- In his STOC'82 paper, Moshe Vardi introduced the notions combined complexity: Measure the complexity of evaluating φ on *D* in terms of the sizes of φ and *D*.
- and data complexity: Assume the query φ to be fixed. Measure the complexity of evaluating φ on D only in terms of the size of D.

Typical results of Finite Model Theory and Database Theory:

- Boolean Conjunctive Queries: data complexity is in AC⁰, combined complexity is NP-complete [Chandra & Merlin '77]
- Boolean First-Order Queries: data complexity is in AC⁰, combined complexity is PSPACE-complete [Stockmeyer '74, Vardi '82]
- Boolean Queries of Least-Fixed Point Logic LFP: data complexity is PTIME-complete, combined complexity is EXPTIME-complete [Immerman '82, Vardi '82].

- In his STOC'82 paper, Moshe Vardi introduced the notions combined complexity: Measure the complexity of evaluating φ on *D* in terms of the sizes of φ and *D*.
- and data complexity: Assume the query φ to be fixed. Measure the complexity of evaluating φ on D only in terms of the size of D.

Typical results of Finite Model Theory and Database Theory:

- Boolean Conjunctive Queries: data complexity is in AC⁰, combined complexity is NP-complete [Chandra & Merlin '77]
- Boolean First-Order Queries: data complexity is in AC⁰, combined complexity is PSPACE-complete [Stockmeyer '74, Vardi '82]
- Boolean Queries of Least-Fixed Point Logic LFP: data complexity is PTIME-complete, combined complexity is EXPTIME-complete [Immerman '82, Vardi '82].

CAVEAT: These notions & results do not handle updates of the db!

Nicole Schweikardt (HU Berlin)

Enumeration

Database D

• query $\varphi(x_1,\ldots,x_k)$

Database D

• query $\varphi(x_1,\ldots,x_k)$

Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

Database D

• query $\varphi(x_1,\ldots,x_k)$

► Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

Output:

For Boolean queries:

• Decide if $D \models \varphi$

Database D

• query $\varphi(x_1,\ldots,x_k)$

► Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

Output:

For Boolean queries:

• Decide if $D \models \varphi$

For k-ary queries:

Database D

• query $\varphi(x_1,\ldots,x_k)$

► Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

Output:

For Boolean queries:

• Decide if $D \models \varphi$

For *k*-ary queries:

• Compute the number of tuples in $\varphi(D)$

Database D

- query $\varphi(x_1,\ldots,x_k)$
- ► Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

Output:

For Boolean queries:

- Decide if $D \models \varphi$
- For *k*-ary queries:
 - Compute the number of tuples in $\varphi(D)$
 - Test for a given tuple \overline{a} whether $\overline{a} \in \varphi(D)$

Database D

- query $\varphi(x_1,\ldots,x_k)$
- ► Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

Output:

For Boolean queries:

- Decide if $D \models \varphi$
- For *k*-ary queries:
 - Compute the number of tuples in $\varphi(D)$
 - Test for a given tuple \overline{a} whether $\overline{a} \in \varphi(D)$
 - Enumerate the tuples in $\varphi(D)$

Database D

- query $\varphi(x_1,\ldots,x_k)$
- Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

Output:

For Boolean queries:

• Decide if $D \models \varphi$

For *k*-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \overline{a} whether $\overline{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
 - without repetition
 - with guarantee on the max. delay between output tuples

Database D

• query $\varphi(x_1,\ldots,x_k)$

Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

Output:

For Boolean queries:

• Decide if $D \models \varphi$

For *k*-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \overline{a} whether $\overline{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
 - without repetition
 - with guarantee on the max. delay between output tuples

Dynamic setting:

Tuples may be inserted into or deleted from D

Nicole Schweikardt (HU Berlin)

Database D

• query $\varphi(x_1,\ldots,x_k)$

Preprocessing:

Build a suitable data structure that represents D and $\varphi(D)$

Output:

For Boolean queries:

 $\blacktriangleright \text{ Decide if } D \models \varphi$

For *k*-ary queries:

- Compute the number of tuples in $\varphi(D)$
- Test for a given tuple \overline{a} whether $\overline{a} \in \varphi(D)$
- Enumerate the tuples in $\varphi(D)$
 - without repetition
 - with guarantee on the max. delay between output tuples

Dynamic setting:

Tuples may be inserted into or deleted from D

Goal: preprocessing time & delay (& update time) as small as possible

Nicole Schweikardt (HU Berlin)

Enumeration

Constant delay enumeration after linear time preprocessing

- Let φ be a fixed query
- Let C be a class of databases
- ► Goal:

Find an algorithm which, upon input of a db D, uses preprocessing time (pseudo-)linear in ||D|| and then enumerates $\varphi(D)$ with delay O(1)

linear : O(N)pseudo-linear : $\forall \epsilon > 0 \exists$ algorithm with runtime $O(N^{1+\epsilon})$

Constant delay enumeration after linear time preprocessing

- Let φ be a fixed query
- Let C be a class of databases
- ► Goal:

Find an algorithm which, upon input of a db D, uses preprocessing time (pseudo-)linear in ||D|| and then enumerates $\varphi(D)$ with delay O(1)

Question: For which φ, C is this possible?

linear : O(N)pseudo-linear : $\forall \epsilon > 0 \exists$ algorithm with runtime $O(N^{1+\epsilon})$

Nicole Schweikardt (HU Berlin)

Enumeration

Introduction

First-Order Queries

Conjunctive Queries

Final Remarks

Nicole Schweikardt (HU Berlin)

Enumeration

Overview

Introduction

First-Order Queries

Conjunctive Queries

Final Remarks

Nicole Schweikardt (HU Berlin)

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class *C*, if

C has bounded degree

[Durand, Grandjean 2007]

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class *C*, if

- ► C has bounded degree
- C has bounded tree-width

[Durand, Grandjean 2007]

[Bagan 2006]

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class *C*, if

- C has bounded degree [Durand, Grandjean 2007]
- C has bounded tree-width
- C has bounded expansion

[Bagan 2006]

[Kazana, Segoufin 2013]

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class C, if

- C has bounded degree [Durand, Grandjean 2007]
 - C has bounded tree-width
- C has bounded expansion
- C has locally bounded expansion

[Bagan 2006]

[Kazana, Segoufin 2013]

[Segoufin, Vigny 2017]

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class *C*, if

- C has bounded degree
 C has bounded tree-width
 C has bounded expansion
- C has locally bounded expansion
- C is nowhere dense

[Durand, Grandjean 2007]

[Bagan 2006]

[Kazana, Segoufin 2013]

[Segoufin, Vigny 2017]

[S., Segoufin, Vigny 2018]

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class *C*, if

 C has bounded degree 	[Durand, Grandjean 2007]
 C has bounded tree-width 	[Bagan 2006]
 C has bounded expansion 	[Kazana, Segoufin 2013]
 C has locally bounded expansion 	[Segoufin, Vigny 2017]
 C is nowhere dense 	[S., Segoufin, Vigny 2018]
For any subgraph-closed class <i>C</i> that is not nowhere dense, evaluation of Boolean FO-queries is not possible in time $f(\varphi) D ^{O(1)}$	

(assuming FPT \neq W[1]) [Kreutzer 2011, Dvořák, Král, Thomas 2010]

Positive Results for FO-Queries (static setting: without updates) Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class C, if

C has bounded degree [Durand, Grandjean 2007] C has bounded tree-width [Bagan 2006] C has bounded expansion [Kazana, Segoufin 2013] C has locally bounded expansion [Segoufin, Vigny 2017] C is nowhere dense [S., Segoufin, Vigny 2018] For any subgraph-closed class C that is not nowhere dense, evaluation of Boolean FO-queries is not possible in time $f(\|\varphi\|)\|D\|^{O(1)}$ (assuming FPT \neq W[1]) [Kreutzer 2011, Dvořák, Král, Thomas 2010]

C has low degree [Durand, S., Segoufin 2014]

i.e., for each $\delta > 0$, all sufficiently large D in C have degree $\leq \|D\|^{\delta}$.

Positive Results for FO-Queries (static setting: without updates)

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class *C*, if

C has bounded degree	[Durand, Grandjean 2007]
C has bounded tree-width	[Bagan 2006]
C has bounded expansion	[Kazana, Segoufin 2013]
C has locally bounded expansion	[Segoufin, Vigny 2017]
C is nowhere dense	[S., Segoufin, Vigny 2018]
For any subgraph-closed class C that is not nowhere dense, evaluation of Boolean FO-queries is not possible in time $f(\ \varphi\)\ D\ ^{O(1)}$ (assuming FPT \neq W[1]) [Kreutzer 2011, Dvořák, Král, Thomas 2010]	

► C has low degree [Durand, S., Segoufin 2014] i.e., for each $\delta > 0$, all sufficiently large D in C have degree $\leq \|D\|^{\delta}$. Some such C are not nowhere dense (and not subgraph-closed).

Nicole Schweikardt (HU Berlin)

Positive Results for FO-Queries (static setting: without updates)

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class *C*, if

C has bounded degree	[Durand, Grandjean 2007]
C has bounded tree-width	[Bagan 2006]
C has bounded expansion	[Kazana, Segoufin 2013]
C has locally bounded expansion	[Segoufin, Vigny 2017]
C is nowhere dense	[S., Segoufin, Vigny 2018]
For any subgraph-closed class C that is not nowhere dense, evaluation of Boolean FO-queries is not possible in time $f(\ \varphi\)\ D\ ^{O(1)}$ (assuming FPT \neq W[1]) [Kreutzer 2011, Dvořák, Král, Thomas 2010]	

► C has low degree [Durand, S., Segoufin 2014] i.e., for each $\delta > 0$, all sufficiently large D in C have degree $\leq \|D\|^{\delta}$. Some such C are not nowhere dense (and not subgraph-closed).

Bounded degree databases

```
Graph G = (V, E):
degree of a node v : the number of neighbours of v in G
degree of G : max {degree(v) : v \in V}
```

Database *D*:

degree of D : degree of the Gaifman graph of D

Gaifman graph of D:

the graph G = (V, E) with V = adom(D) and an edge between two distinct nodes $a, b \in V$ iff some tuple in some relation of D contains a and b

Nicole Schweikardt (HU Berlin)

Boolean queries:

evaluation in linear time

[Seese 1996]

Boolean queries:

- evaluation in linear time [Seese 1996]
- evaluation in time $f(\varphi, d) \|D\|$, for [Frick, Grohe 2004]

 $f(\varphi, d) = 2^{d^{2^{\mathcal{O}}(\|\varphi\|)}} = 3 - \exp(\|\varphi\| + \lg \lg d)$

and the 3-fold exponential blow-up is unavoidable assuming FPT \neq AW[*].

Boolean queries:

- evaluation in linear time [Seese 1996]
- evaluation in time $f(\varphi, d) \|D\|$, for [Frick, Grohe 2004]

 $f(\varphi, d) = 2^{d^{2^{\mathcal{O}}(\|\varphi\|)}} = 3 - \exp(\|\varphi\| + \lg \lg d)$

and the 3-fold exponential blow-up is unavoidable assuming FPT \neq AW[*].

Non-Boolean queries:

 constant-delay enumeration with linear-time preprocessing [Durand, Grandjean 2007]

Boolean queries:

- evaluation in linear time [Seese 1996]
- evaluation in time $f(\varphi, d) \|D\|$, for [Frick, Grohe 2004]

 $f(\varphi, d) = 2^{d^{2^{\mathcal{O}}(\|\varphi\|)}} = 3 - \exp(\|\varphi\| + \lg \lg d)$

and the 3-fold exponential blow-up is unavoidable assuming FPT \neq AW[*].

Non-Boolean queries:

 constant-delay enumeration with linear-time preprocessing [Durand, Grandjean 2007]

[Durand, Grandjean 2007]

• enumeration with delay $f(\varphi, d)$ and preprocessing $f(\varphi, d) ||D||$, where $f(\varphi, d) = 3 - \exp(||\varphi|| + \lg \lg d)$ [Kazana, Segoufin 2011]

Boolean queries:

- evaluation in linear time [Seese 1996]
- evaluation in time $f(\varphi, d) \|D\|$, for [Frick, Grohe 2004]

 $f(\varphi, d) = 2^{d^{2^{\mathcal{O}}(\|\varphi\|)}} = 3 - \exp(\|\varphi\| + \lg \lg d)$

and the 3-fold exponential blow-up is unavoidable assuming FPT \neq AW[*].

Non-Boolean queries:

constant-delay enumeration with linear-time preprocessing

[Durand, Grandjean 2007]

enumeration with delay f(φ, d) and preprocessing f(φ, d) ||D||, where f(φ, d) = 3-exp(||φ|| + lg lg d) [Kazana, Segoufin 2011]

Generalisation to the dynamic setting (update time $f(\varphi, d)$) and FO+MOD [Berkholz, Keppeler, S. 2017] and FOC(\mathbb{P}) [Kuske, S. 2017]

Movie	
Name	Actor
Alien	Sigourney Weaver
Blade Runner	Harrison Ford
Blade Runner	Sean Young
Brazil	Jonathan Pryce
Brazil	Kim Greist
Casablanca	Humphrey Bogart
Casablanca	Ingrid Bergmann
Gravity	Sandra Bullock
Gravity	George Clooney
Resident Evil	Milla Jovovich
Terminator	Arnold Schwarzenegger
Terminator	Linda Hamilton
Terminator	Michael Biehn
-	÷

Is the number of movies with Ingrid Bergmann even?

In FO+MOD:

 $\exists^{0 \mod 2} y \quad Movie(y, "Ingrid Bergmann")$

 $\begin{array}{l} \mathsf{FO} + \mathsf{MOD} = & \mathsf{extension of first-order logic with} \\ \mathsf{modulo-counting quantifiers } & \exists^{i \, \mathsf{mod} \, m} \, y \, \psi(y, \overline{z}) \end{array}$

Movie		
Name	Actor	
Alien	Sigourney Weaver	
Blade Runner	Harrison Ford	
Blade Runner	Sean Young	
Brazil	Jonathan Pryce	
Brazil	Kim Greist	
Casablanca	Humphrey Bogart	
Casablanca	Ingrid Bergmann	
Gravity	Sandra Bullock	
Gravity	George Clooney	
Resident Evil	Milla Jovovich	
Terminator	Arnold Schwarzenegger	
Terminator	Linda Hamilton	
Terminator	Michael Biehn	
:	:	
•	· ·	

Is the number of movies with Ingrid Bergmann even?

In FO+MOD:

 $\exists^{0 \mod 2} y \quad Movie(y, "Ingrid Bergmann")$

In FOC(\mathbb{P}):

 $P_{even}(\#(y).Movie(y, "Ingrid Bergmann"))$

 $\begin{array}{l} \mathsf{FO}+\mathsf{MOD} = & \mathsf{extension of first-order logic with} \\ \mathsf{modulo-counting quantifiers } & \exists^{i \, \mathsf{mod} \, m} \, y \, \psi(y, \overline{z}) \end{array}$

Movie		
Name	Actor	
Alien	Sigourney Weaver	
Blade Runner	Harrison Ford	
Blade Runner	Sean Young	
Brazil	Jonathan Pryce	
Brazil	Kim Greist	
Casablanca	Humphrey Bogart	
Casablanca	Ingrid Bergmann	
Gravity	Sandra Bullock	
Gravity	George Clooney	
Resident Evil	Milla Jovovich	
Terminator	Arnold Schwarzenegger	
Terminator	Linda Hamilton	
Terminator	Michael Biehn	
:	:	
	:	

Is the number of movies with Ingrid Bergmann even?

In FO+MOD:

 $\exists^{0 \mod 2} y \quad Movie(y, "Ingrid Bergmann")$

In FOC(\mathbb{P}):

 $P_{even}(\#(y).Movie(y, "Ingrid Bergmann"))$

 $\begin{array}{l} \mathsf{FO}+\mathsf{MOD} = & \mathsf{extension of first-order logic with} \\ \mathsf{modulo-counting quantifiers } & \exists^{i \, \mathsf{mod} \, m} \, y \, \psi(y, \overline{z}) \end{array}$

Let \mathbb{P} be a collection of numerical predicates. E.g., \mathbb{P} may contain the predicates $\llbracket P_{even} \rrbracket = \{i \in \mathbb{Z} : i \text{ is even}\}$ and $\llbracket P_{\leqslant} \rrbracket = \{(i,j) \in \mathbb{Z}^2 : i \leqslant j\}.$

Movie		
Name	Actor	
Alien	Sigourney Weaver	
Blade Runner	Harrison Ford	
Blade Runner	Sean Young	
Brazil	Jonathan Pryce	
Brazil	Kim Greist	
Casablanca	Humphrey Bogart	
Casablanca	Ingrid Bergmann	
Gravity	Sandra Bullock	
Gravity	George Clooney	
Resident Evil	Milla Jovovich	
Terminator	Arnold Schwarzenegger	
Terminator	Linda Hamilton	
Terminator	Michael Biehn	
:	:	
	:	

Is the number of movies with Ingrid Bergmann even?

In FO+MOD:

 $\exists^{0 \mod 2} y \quad Movie(y, "Ingrid Bergmann")$

In FOC(\mathbb{P}):

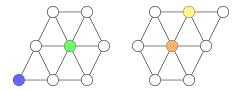
 $P_{even}(\#(y).Movie(y, "Ingrid Bergmann"))$

FO+MOD = extension of first-order logic with modulo-counting quantifiers $\exists^{i \mod m} y \ \psi(y, \overline{z})$

Let \mathbb{P} be a collection of numerical predicates. E.g., \mathbb{P} may contain the predicates $\llbracket P_{even} \rrbracket = \{i \in \mathbb{Z} : i \text{ is even}\}$ and $\llbracket P_{\leq} \rrbracket = \{(i,j) \in \mathbb{Z}^2 : i \leq j\}$. FOC(\mathbb{P}) = extension of first-order logic with formulas of the form $P(t_1, \ldots, t_r)$ for $P \in \mathbb{P}$ of arity r, and where each t_i is a counting term built using integers, $+, \cdot$, and basic counting terms $t(\overline{x})$ of the form $\#\overline{y}.\psi(\overline{x},\overline{y})$

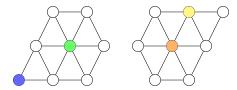
Nicole Schweikardt (HU Berlin)

• A type τ with k centres and radius r:



Example type with k = 4 centres and radius r = 1

• A type τ with k centres and radius r:



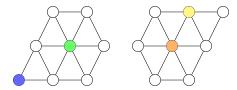
Example type with k = 4 centres and radius r = 1

• $\mathcal{N}_r^D(\overline{b})$ is the induced substructure of D on $N_r^D(\overline{b}) = N_r^D(b_1) \cup \cdots \cup N_r^D(b_k)$

where

$$N_r^D(b_i) = \{a \in \operatorname{adom}(D) : \operatorname{dist}^D(b_i, a) \leqslant r\}$$

• A type τ with k centres and radius r:



Example type with k = 4 centres and radius r = 1

• $\mathcal{N}_r^D(\overline{b})$ is the induced substructure of D on $N_r^D(\overline{b}) = N_r^D(b_1) \cup \cdots \cup N_r^D(b_k)$

where

$$N_r^D(b_i) = \{a \in \operatorname{adom}(D) : \operatorname{dist}^D(b_i, a) \leqslant r\}$$

Sphere-formula $\operatorname{sph}_{\tau}(\overline{x})$:

 $(D,\overline{a}) \models \operatorname{sph}_{\tau}(\overline{x}) \iff (\mathcal{N}_{r}^{D}(\overline{a}),\overline{a}) \cong \tau$

Nicole Schweikardt (HU Berlin)

A Hanf normal form $\psi(\overline{x})$ is a Boolean combination of

- ▶ sphere-formulas $sph_{\rho}(\overline{x})$ and
- ► Hanf-sentences $\exists^{\geq m} y \operatorname{sph}_{\tau}(y)$ and $\exists^{i \mod m} y \operatorname{sph}_{\tau}(y)$ where τ is a type with 1 centre and radius r.

A Hanf normal form $\psi(\overline{x})$ is a Boolean combination of

- ▶ sphere-formulas $sph_{\rho}(\overline{x})$ and
- ► Hanf-sentences $\exists^{\geq m} y \operatorname{sph}_{\tau}(y)$ and $\exists^{i \mod m} y \operatorname{sph}_{\tau}(y)$ where τ is a type with 1 centre and radius r.

Two queries $\varphi(\overline{x})$ and $\psi(\overline{x})$ are *d*-equivalent iff

$$(D,\overline{a}) \models \varphi \quad \Longleftrightarrow \quad (D,\overline{a}) \models \psi$$

for all dbs *D* of degree $\leq d$.

A Hanf normal form $\psi(\overline{x})$ is a Boolean combination of

- ▶ sphere-formulas $sph_{\rho}(\overline{x})$ and
- ► Hanf-sentences $\exists^{\geq m} y \operatorname{sph}_{\tau}(y)$ and $\exists^{i \mod m} y \operatorname{sph}_{\tau}(y)$ where τ is a type with 1 centre and radius r.

Two queries $\varphi(\overline{x})$ and $\psi(\overline{x})$ are *d*-equivalent iff

$$(D,\overline{a}) \models \varphi \iff (D,\overline{a}) \models \psi$$

for all dbs D of degree $\leq d$.

Theorem (Heimberg, Kuske, S., 2016)

There is an algorithm which receives as input a degree bound $d \ge 2$ and a FO+MOD-formula $\varphi(\overline{x})$, and constructs a d-equivalent formula $\psi(\overline{x})$ in Hanf normal form.

The algorithm's runtime is $f(\varphi, d) = 3 - exp(||\varphi|| + |g | g d)$.

Nicole Schweikardt (HU Berlin)

Boolean queries under updates $f(\varphi, d) = 3 - \exp(||\varphi|| + \lg \lg d)$

Observation: There is a dynamic algorithm that receives as input

- ▶ a degree bound $d \ge 2$,
- ▶ a Boolean FO+MOD-query φ , and
- ▶ a db *D* of degree $\leq d$,

and computes

- within $f(\varphi, d) \|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$

and allows to return the query result $\varphi(D)$ with answer time O(1).

Boolean queries under updates $f(\varphi, d) = 3 - \exp(||\varphi|| + \lg \lg d)$

Observation: There is a dynamic algorithm that receives as input

- ▶ a degree bound $d \ge 2$,
- ▶ a Boolean FO+MOD-query φ , and
- ▶ a db *D* of degree $\leq d$,

and computes

- within $f(\varphi, d) \|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$

and allows to return the query result $\varphi(D)$ with answer time O(1).

Proof Idea:

- 1. Transform φ into Hanf normal form $\psi.$
- 2. For each type τ occurring in ψ , store the number A_{τ} of elements in adom(D) whose *r*-neighbourhood has type τ .
- 3. Inserting/deleting a tuple in D only affects the type of a fixed number of elements in $adom(D) \rightarrow update$ affected A_{τ} -values.

Nicole Schweikardt (HU Berlin)

Enumeration under updates $f(\varphi, d) = 3 \exp(||\varphi|| + |g||g|d)$

Theorem (Berkholz, Keppeler, S. 2017): There is a dynamic algorithm that receives as input

- > a degree bound $d \ge 2$,
- ▶ a k-ary FO+MOD-query $\varphi(\overline{x})$, and
- > a db D of degree $\leq d$.

and computes

- within $f(\varphi, d) \|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$

and allows to enumerate $\varphi(D)$ with delay $O(k^2)$.

Enumeration under updates $f(\varphi, d) = 3 \exp(||\varphi|| + |g||g|d)$

Theorem (Berkholz, Keppeler, S. 2017): There is a dynamic algorithm that receives as input

- > a degree bound $d \ge 2$,
- ▶ a k-ary FO+MOD-query $\varphi(\overline{x})$, and
- > a db D of degree $\leq d$.

and computes

- within $f(\varphi, d) \|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$

and allows to enumerate $\varphi(D)$ with delay $O(k^2)$.

Proof Idea:

Proof idea: Reduction to coloured graphs

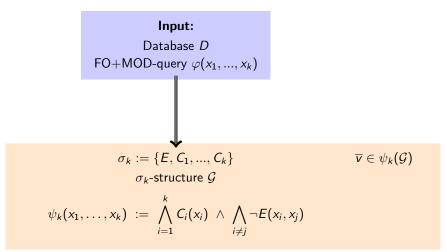
Input:

Database DFO+MOD-query $\varphi(x_1,...,x_k)$

Same approach as in [Durand, S., Segoufin 2014], but now we have to take care of updates!

Nicole Schweikardt (HU Berlin)

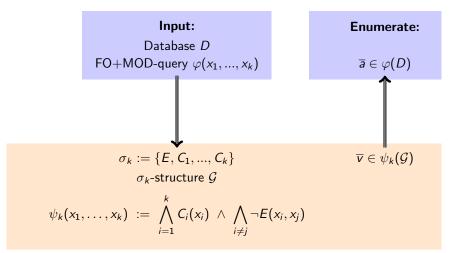
Proof idea: Reduction to coloured graphs



Same approach as in [Durand, S., Segoufin 2014], but now we have to take care of updates!

Nicole Schweikardt (HU Berlin)

Proof idea: Reduction to coloured graphs



Same approach as in [Durand, S., Segoufin 2014], but now we have to take care of updates!

Nicole Schweikardt (HU Berlin)

$$\varphi(x_1,\ldots,x_k) \equiv_d \bigvee_{i\in\mathcal{I}} \operatorname{sph}_{\tau_i}(x_1,\ldots,x_k)$$
 & sentences

$$\begin{split} \varphi(x_1, \dots, x_k) &\equiv_d \quad \bigvee_{i \in \mathcal{I}} \operatorname{sph}_{\tau_i}(x_1, \dots, x_k) & \& \text{ sentences} \\ \operatorname{sph}_{\tau}(\overline{x}_1, \dots, \overline{x}_c) &\equiv_d \quad \bigwedge_{j \in \{1, \dots, c\}} \operatorname{sph}_{\tau_j}(\overline{x}_j) & \land \quad \bigwedge_{j \neq j'} \neg \operatorname{dist}_{\leqslant 2r+1}(\overline{x}_j, \overline{x}_{j'}) \end{split}$$

$$\begin{split} \varphi(x_1, \dots, x_k) &\equiv_d \quad \bigvee_{i \in \mathcal{I}} \operatorname{sph}_{\tau_i}(x_1, \dots, x_k) \quad \& \text{ sentences} \\ \operatorname{sph}_{\tau}(\overline{x}_1, \dots, \overline{x}_c) &\equiv_d \quad \bigwedge_{j \in \{1, \dots, c\}} \operatorname{sph}_{\tau_j}(\overline{x}_j) \quad \land \quad \bigwedge_{j \neq j'} \neg \operatorname{dist}_{\leqslant 2r+1}(\overline{x}_j, \overline{x}_{j'}) \\ & & & & \\ \varphi_c(z_1, \dots, z_c) &:= \quad \bigwedge_{j \in \{1, \dots, c\}} C_j(z_j) \quad \land \quad \bigwedge_{j \neq j'} \neg E(z_j, z_{j'}) \\ C_j^{\mathcal{G}} &:= \{ v_{\overline{a}} : \overline{a} \in \operatorname{adom}(D)^{|x_j|}, (\mathcal{N}_r^{\mathcal{D}}(\overline{a}), \overline{a}) \cong \tau_j \} \end{split}$$

$$V := \bigcup_{j \in \{1, \dots, c\}} C_j^{\mathcal{G}}$$

$$\begin{split} \varphi(\mathbf{x}_{1},\ldots,\mathbf{x}_{k}) &\equiv_{d} \quad \bigvee_{i\in\mathcal{I}} \operatorname{sph}_{\tau_{i}}(\mathbf{x}_{1},\ldots,\mathbf{x}_{k}) \quad \& \text{ sentences} \\ \operatorname{sph}_{\tau}(\overline{\mathbf{x}}_{1},\ldots,\overline{\mathbf{x}}_{c}) &\equiv_{d} \quad \bigwedge_{j\in\{1,\ldots,c\}} \operatorname{sph}_{\tau_{j}}(\overline{\mathbf{x}}_{j}) \quad \land \quad \bigwedge_{j\neq j'} \operatorname{\neg dist}_{\leqslant 2r+1}(\overline{\mathbf{x}}_{j},\overline{\mathbf{x}}_{j'}) \\ & \downarrow \\ \varphi_{c}(\mathbf{z}_{1},\ldots,\mathbf{z}_{c}) &:= \quad \bigwedge_{j\in\{1,\ldots,c\}} C_{j}(\mathbf{z}_{j}) \quad \land \quad \bigwedge_{j\neq j'} \operatorname{\neg} E(\mathbf{z}_{j},\mathbf{z}_{j'}) \\ C_{j}^{\mathcal{G}} &:= \{\mathbf{v}_{\overline{a}}: \overline{a} \in \operatorname{adom}(D)^{|\mathbf{x}_{j}|}, (\mathcal{N}_{r}^{D}(\overline{a}),\overline{a}) \cong \tau_{j}\} \\ V &:= \bigcup_{j\in\{1,\ldots,c\}} C_{j}^{\mathcal{G}} \qquad E^{\mathcal{G}} &:= \{(\mathbf{v}_{\overline{a}},\mathbf{v}_{\overline{b}}) \in V^{2}: \operatorname{dist}^{D}(\overline{a},\overline{b}) \leqslant 2r+1\} \end{split}$$

$$\varphi(x_{1},...,x_{k}) \equiv_{d} \bigvee_{i\in\mathcal{I}} \operatorname{sph}_{\tau_{i}}(x_{1},...,x_{k}) & \text{\& sentences}$$

$$\operatorname{sph}_{\tau}(\overline{x}_{1},...,\overline{x}_{c}) \equiv_{d} \bigwedge_{j\in\{1,...,c\}} \operatorname{sph}_{\tau_{j}}(\overline{x}_{j}) \land \bigwedge_{j\neq j'} \operatorname{\neg dist}_{\leq 2r+1}(\overline{x}_{j},\overline{x}_{j'})$$

$$\varphi_{c}(z_{1},...,z_{c}) := \bigwedge_{j\in\{1,...,c\}} C_{j}(z_{j}) \land \bigwedge_{j\neq j'} \operatorname{\neg} E(z_{j},z_{j'})$$

$$C_{j}^{\mathcal{G}} := \{v_{\overline{a}}:\overline{a}\in\operatorname{adom}(D)^{|x_{j}|}, (\mathcal{N}_{r}^{\mathcal{D}}(\overline{a}),\overline{a})\cong \tau_{j}\}$$

$$V := \bigcup_{j\in\{1,...,c\}} C_{j}^{\mathcal{G}} \qquad E^{\mathcal{G}} := \{(v_{\overline{a}},v_{\overline{b}})\in V^{2}:\operatorname{dist}^{\mathcal{D}}(\overline{a},\overline{b})\leqslant 2r+1\}$$

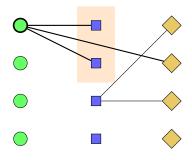
$$(\overline{a}_1,\ldots,\overline{a}_c)\in \operatorname{sph}_{\tau}(D)$$
 \iff $(v_{\overline{a}_1},\ldots,v_{\overline{a}_c})\in \varphi_c(\mathcal{G})$

$$\begin{split} \varphi(x_1, \dots, x_k) &\equiv_d \quad \bigvee_{i \in \mathcal{I}} \operatorname{sph}_{\tau_i}(x_1, \dots, x_k) \quad \& \text{ sentences} \\ \operatorname{sph}_{\tau}(\overline{x}_1, \dots, \overline{x}_c) &\equiv_d \quad \bigwedge_{j \in \{1, \dots, c\}} \operatorname{sph}_{\tau_j}(\overline{x}_j) \quad \land \quad \bigwedge_{j \neq j'} \neg \operatorname{dist}_{\leqslant 2r+1}(\overline{x}_j, \overline{x}_{j'}) \\ & \downarrow \\ \varphi_c(z_1, \dots, z_c) &\coloneqq \quad \bigwedge_{j \in \{1, \dots, c\}} C_j(z_j) \quad \land \quad \bigwedge_{j \neq j'} \neg E(z_j, z_{j'}) \\ C_j^{\mathcal{G}} &\coloneqq \|\nabla_{\overline{a}} : \overline{a} \in \operatorname{adom}(D)^{|x_j|}, (\mathcal{N}_r^{\mathcal{D}}(\overline{a}), \overline{a}) \cong \tau_j \} \\ V &\coloneqq \bigcup_{j \in \{1, \dots, c\}} C_j^{\mathcal{G}} \qquad E^{\mathcal{G}} := \{(v_{\overline{a}}, v_{\overline{b}}) \in V^2 : \operatorname{dist}^{\mathcal{D}}(\overline{a}, \overline{b}) \leqslant 2r+1 \} \end{split}$$

$$(\overline{a}_1,\ldots,\overline{a}_c)\in \operatorname{sph}_{\tau}(D)$$
 \iff $(v_{\overline{a}_1},\ldots,v_{\overline{a}_c})\in \varphi_c(\mathcal{G})$

When a tuple is inserted/deleted in D, update the coloured graph \mathcal{G} . Nicole Schweikardt (HU Berlin) Enumeration Enumeration of $\psi_k(\mathcal{G})$ with delay $O(k^3d)$

$$\psi_k(x_1,\ldots,x_k) := \bigwedge_{i=1}^k C_i(x_i) \wedge \bigwedge_{i\neq j} \neg E(x_i,x_j)$$

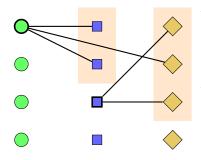


for all $u_1 \in C_1^{\mathcal{G}}$ do Enum (u_1) .

Output EOE.

function ENUM (u_1, \ldots, u_i) if i = k then Output (u_1, \ldots, u_i) else for all $u_{i+1} \in C_{i+1}^{\mathcal{G}}$ do if $u_{i+1} \notin \bigcup_{j=1}^{i} N^{\mathcal{G}}(u_j)$ then Enum $(u_1, \ldots, u_i, u_{i+1})$ Enumeration of $\psi_k(\mathcal{G})$ with delay $O(k^3d)$

$$\psi_k(x_1,\ldots,x_k) := \bigwedge_{i=1}^k C_i(x_i) \wedge \bigwedge_{i\neq j} \neg E(x_i,x_j)$$

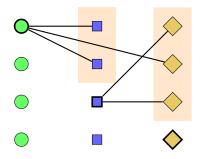


for all $u_1 \in C_1^{\mathcal{G}}$ do Enum (u_1) .

Output EOE.

function ENUM(u_1, \ldots, u_i) if i = k then Output (u_1, \ldots, u_i) else for all $u_{i+1} \in C_{i+1}^{\mathcal{G}}$ do if $u_{i+1} \notin \bigcup_{j=1}^{i} N^{\mathcal{G}}(u_j)$ then Enum $(u_1, \ldots, u_i, u_{i+1})$ Enumeration of $\psi_k(\mathcal{G})$ with delay $O(k^3d)$

$$\psi_k(x_1,\ldots,x_k) := \bigwedge_{i=1}^k C_i(x_i) \wedge \bigwedge_{i\neq j} \neg E(x_i,x_j)$$



for all $u_1 \in C_1^{\mathcal{G}}$ do Enum (u_1) .

Output EOE.

function ENUM (u_1, \ldots, u_i) if i = k then Output (u_1, \ldots, u_i) else for all $u_{i+1} \in C_{i+1}^{\mathcal{G}}$ do if $u_{i+1} \notin \bigcup_{j=1}^{i} N^{\mathcal{G}}(u_j)$ then Enum $(u_1, \ldots, u_i, u_{i+1})$ Enumeration of $\psi_k(\mathcal{G})$ with delay $O(k^3d)$

 $\psi_k(x_1,\ldots,x_k) := \bigwedge^k C_i(x_i) \wedge \bigwedge_{i=1} \neg E(x_i,x_j)$ i=1for all $u_1 \in C_1^{\mathcal{G}}$ do Enum (u_1) . Output EOE. function ENUM (u_1, \ldots, u_i) if i = k then Output (u_1, \ldots, u_i) else for all $u_{i+1} \in C_{i+1}^{\mathcal{G}}$ do Problem: Too few blue nodes if $u_{i+1} \notin \bigcup_{i=1}^{i} N^{\mathcal{G}}(u_i)$ then $\text{Enum}(u_1, \ldots, u_i, u_{i+1})$

A colour $\ell \in \{1, \dots, k\}$ is small $:\iff |C_{\ell}^{\mathcal{G}}| \leqslant dk$

A colour $\ell \in \{1, \ldots, k\}$ is small $:\iff |C_{\ell}^{\mathcal{G}}| \leq dk$

W.l.o.g. let $I = \{1, \ldots, s\}$ be the set of small colours (with $s \leq k$).

A colour
$$\ell \in \{1, \ldots, k\}$$
 is small $:\iff |C_{\ell}^{\mathcal{G}}| \leqslant dk$

W.l.o.g. let $I = \{1, \ldots, s\}$ be the set of small colours (with $s \leq k$).

$$\mathcal{S} := \left\{ (u_1, \dots, u_s) \in C_1^{\mathcal{G}} \times \dots \times C_s^{\mathcal{G}} : \begin{array}{c} (u_j, u_{j'}) \notin E^{\mathcal{G}}, \\ \text{for all } j \neq j' \end{array} \right\}$$

The set S can be computed in time $O((dk)^k)$.

A colour
$$\ell \in \{1, \ldots, k\}$$
 is small $:\iff |C_{\ell}^{\mathcal{G}}| \leqslant dk$

W.l.o.g. let $I = \{1, \ldots, s\}$ be the set of small colours (with $s \leq k$).

$$\mathcal{S} := \left\{ (u_1, \dots, u_s) \in C_1^{\mathcal{G}} \times \dots \times C_s^{\mathcal{G}} : \begin{array}{c} (u_j, u_{j'}) \notin E^{\mathcal{G}}, \\ \text{for all } j \neq j' \end{array} \right\}$$

The set S can be computed in time $O((dk)^k)$.

 $\overline{s} \in S \iff$ ex. \overline{a} such that $(\overline{s}, \overline{a}) \in \varphi(D)$

Nicole Schweikardt (HU Berlin)

The enumeration procedure

- 1: for all $(u_1,\ldots,u_s)\in\mathcal{S}$ do
- 2: $Enum(u_1, ..., u_s).$
- 3: Output the end-of-enumeration message $\ensuremath{\texttt{EOE}}$.

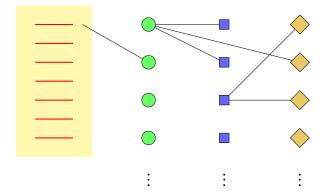
- 5: function $ENUM(u_1, \ldots, u_i)$
- 6: if i = k then
- 7: output the tuple (u_1, \ldots, u_i)
- 8: **else**

9: for all
$$u_{i+1} \in C_{i+1}^{\mathcal{G}}$$
 do

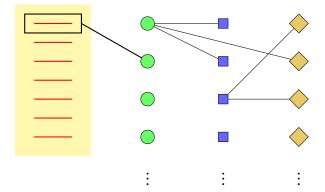
- 10: **if** $u_{i+1} \notin \bigcup_{j=1}^{i} N^{\mathcal{G}}(u_j)$ then
- 11: $Enum(u_1, ..., u_i, u_{i+1})$

where
$$N^{\mathcal{G}}(u_j) := \{v \in V^{\mathcal{G}} : (u_j, v) \in E^{\mathcal{G}}\}.$$

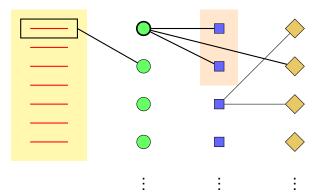
$$\psi_k(x_1,\ldots,x_k) := \bigwedge_{i=1}^k C_i(x_i) \wedge \bigwedge_{i\neq j} \neg E(x_i,x_j)$$



$$\psi_k(x_1,\ldots,x_k) := \bigwedge_{i=1}^k C_i(x_i) \wedge \bigwedge_{i\neq j} \neg E(x_i,x_j)$$

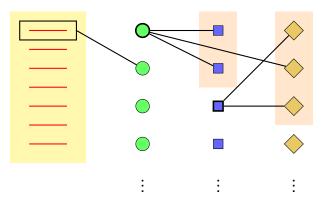


$$\psi_k(x_1,\ldots,x_k) := \bigwedge_{i=1}^k C_i(x_i) \wedge \bigwedge_{i\neq j} \neg E(x_i,x_j)$$

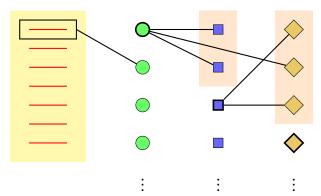


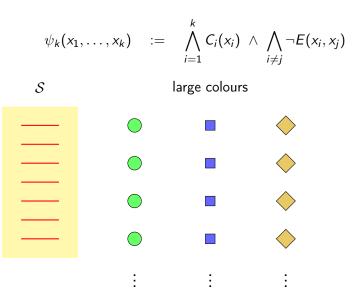
$$\psi_k(x_1,\ldots,x_k) := \bigwedge_{i=1}^k C_i(x_i) \wedge \bigwedge_{i\neq j} \neg E(x_i,x_j)$$

 ${\mathcal S}$



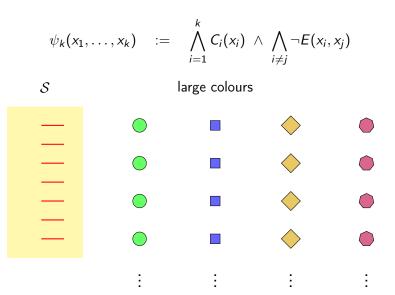
$$\psi_k(x_1,\ldots,x_k) := \bigwedge_{i=1}^k C_i(x_i) \wedge \bigwedge_{i\neq j} \neg E(x_i,x_j)$$





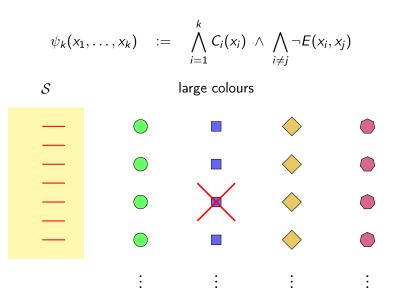
update step: Insert a node into a colour C_{ℓ} with $|C_{\ell}^{\mathcal{G}}| = dk$

Nicole Schweikardt (HU Berlin)



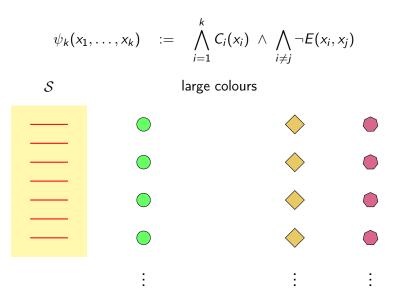
update step: Insert a node into a colour C_{ℓ} with $|C_{\ell}^{\mathcal{G}}| = dk$

Nicole Schweikardt (HU Berlin)



update step: Delete a node from a colour C_{ℓ} with $|C_{\ell}^{\mathcal{G}}| = dk + 1$

Nicole Schweikardt (HU Berlin)



update step: Delete a node from a colour C_{ℓ} with $|C_{\ell}^{\mathcal{G}}| = dk + 1$

Nicole Schweikardt (HU Berlin)

Enumeration under updates $f(\varphi, d) = 3 \exp(||\varphi|| + |g||g|d)$

Theorem (Berkholz, Keppeler, S. 2017): There is a dynamic algorithm that receives as input

- > a degree bound $d \ge 2$,
- ▶ a k-ary FO+MOD-query $\varphi(\overline{x})$, and
- > a db D of degree $\leq d$.

and computes

- within $f(\varphi, d) \|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$

and allows to enumerate $\varphi(D)$ with delay $O(k^2)$.

Enumeration under updates $f(\varphi, d) = 3 \exp(||\varphi|| + |g||g|d)$

Theorem (Berkholz, Keppeler, S. 2017): There is a dynamic algorithm that receives as input

- > a degree bound $d \ge 2$,
- ▶ a k-ary FO+MOD-query $\varphi(\overline{x})$, and
- > a db D of degree $\leq d$.

and computes

- within $f(\varphi, d) \|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$

and allows to enumerate $\varphi(D)$ with delay $\frac{O(k^2)}{O(k^2)} f(\varphi, d)$.

Enumeration under updates $f(\varphi, d) = 3 \exp(||\varphi|| + |g||g|d)$

Theorem (Berkholz, Keppeler, S. 2017): There is a dynamic algorithm that receives as input

- > a degree bound $d \ge 2$,
- ▶ a k-ary FO+MOD-query $\varphi(\overline{x})$, and
- > a db D of degree $\leq d$.

and computes

- within $f(\varphi, d) \|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$

and allows to enumerate $\varphi(D)$ with delay $\frac{O(k^2)}{f(\psi)/dN} O(k^2)$.

For enumeration with delay $O(k^2)$: Use the skip-pointers that were introduced by [Durand, S., Segoufin 2014] for the static setting and lift the approach to the dynamic setting.

Enumeration under updates

 $f(\varphi, d) = 3 - \exp(\|\varphi\| + \lg \lg d)$

Theorem (Berkholz, Keppeler, S. 2017): There is a dynamic algorithm that receives as input

- ▶ a degree bound $d \ge 2$,
- a k-ary FO+MOD-query $\varphi(\overline{x})$, and
- ▶ a db D of degree $\leq d$,

and computes

- within $f(\varphi, d) \|D\|$ preprocessing time a data structure
- that can be updated in time $f(\varphi, d)$

and allows to enumerate $\varphi(D)$ with delay $\frac{O(k^2)}{f(\psi)} f(\psi) O(k^2)$.

For enumeration with delay $O(k^2)$: Use the skip-pointers that were introduced by [Durand, S., Segoufin 2014] for the static setting and lift the approach to the dynamic setting.

For the generalisation to $FOC(\mathbb{P})$ (FO + counting + numerical predicates from \mathbb{P}) use a corresponding HNF for that logic [Kuske, S. 2017].

Nicole Schweikardt (HU Berlin)

Nicole Schweikardt (HU Berlin)

Positive Results for FO-Queries (static setting: without updates)

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class *C*, if

C has bounded degree	[Durand, Grandjean 2007]
C has bounded tree-width	[Bagan 2006]
C has bounded expansion	[Kazana, Segoufin 2013]
${\cal C}$ has locally bounded expansion	[Segoufin, Vigny 2017]
C is nowhere dense	[S., Segoufin, Vigny 2018]
For any subgraph-closed class C that is not nowhere dense, evaluation of Boolean FO-queries is not possible in time $f(\ \varphi\)\ D\ ^{O(1)}$ (assuming FPT \neq W[1]) [Kreutzer 2011, Dvořák, Král, Thomas 2010]	

► C has low degree [Durand, S., Segoufin 2014] i.e., for each $\delta > 0$, all sufficiently large D in C have degree $\leq \|D\|^{\delta}$. Some such C are not nowhere dense (and not subgraph-closed).

Positive Results for FO-Queries (static setting: without updates)

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class *C*, if

C has bounded degree	[Durand, Grandjean 2007]
C has bounded tree-width	[Bagan 2006]
C has bounded expansion	[Kazana, Segoufin 2013]
C has locally bounded expansion	[Segoufin, Vigny 2017]
C is nowhere dense	[S., Segoufin, Vigny 2018]
For any subgraph-closed class C that is not nowhere dense, evaluation of Boolean FO-queries is not possible in time $f(\ \varphi\)\ D\ ^{O(1)}$ (assuming FPT \neq W[1]) [Kreutzer 2011, Dvořák, Král, Thomas 2010]	

C has low degree

[Durand, S., Segoufin 2014]

i.e., for each $\delta > 0$, all sufficiently large D in C have degree $\leq \|D\|^{\delta}$.

Some such C are not nowhere dense (and not subgraph-closed).

Open: To which extensions of FO can this be generalised? Which results can be extended to the dynamic setting?

Nicole Schweikardt (HU Berlin)

Overview

Introduction

First-Order Queries

Conjunctive Queries

Final Remarks

Nicole Schweikardt (HU Berlin)

Constant delay enumeration after linear time preprocessing

 \blacktriangleright Let φ be a fixed query

Let C be a class of databases

► Goal:

Find an algorithm which, upon input of a db D, uses preprocessing time linear in ||D|| and then enumerates $\varphi(D)$ with delay O(1)

Question:

For which φ , *C* is this possible?

Now: φ is a CQ $\varphi(x_1, \ldots, x_k) = \exists y_1 \cdots \exists y_\ell (R_1(\ldots) \land \cdots \land R_s(\ldots))$ *C* is the class of all dbs

Obvious condition: Boolean φ must be tractable in linear time

 \rightsquigarrow restrict attention to acyclic CQs

[Yannakakis 1981]

Nicole Schweikardt (HU Berlin)

$$\varphi_{S-E-T}(x,y) := S(x) \wedge E(x,y) \wedge T(y)$$

can be enumerated with constant delay after linear time preprocessing:

- For input db $D = (adom(D), E^D, S^D, T^D)$
- Compute $E_1 := \{(x, y) \in E^D : x \in S^D\}$
- Compute $E_2 := \{(x, y) \in E_1 : y \in T^D\}$
- Output E₂

$$\varphi_{S-E-T}(x,y) := S(x) \wedge E(x,y) \wedge T(y)$$

can be enumerated with constant delay after linear time preprocessing:

- For input db $D = (adom(D), E^D, S^D, T^D)$
- Compute $E_1 := \{(x, y) \in E^D : x \in S^D\}$
- Compute $E_2 := \{(x, y) \in E_1 : y \in T^D\}$
- Output E₂

Same approach works for the acyclic CQ

$$\varphi_{E-T}(x) := \exists y (E(x,y) \land T(y)).$$

$$\varphi_{S-E-T}(x,y) := S(x) \wedge E(x,y) \wedge T(y)$$

can be enumerated with constant delay after linear time preprocessing:

- For input db $D = (adom(D), E^D, S^D, T^D)$
- Compute $E_1 := \{(x, y) \in E^D : x \in S^D\}$
- Compute $E_2 := \{(x, y) \in E_1 : y \in T^D\}$
- Output E₂

Same approach works for the acyclic CQ

$$\varphi_{E-T}(x) := \exists y (E(x,y) \wedge T(y)).$$

But apparently not for the acyclic CQ

$$\varphi_{AB}(x,y) := \exists z (A(x,z) \land B(z,y))$$

Nicole Schweikardt (HU Berlin)

$$\varphi_{S-E-T}(x,y) := S(x) \wedge E(x,y) \wedge T(y)$$

can be enumerated with constant delay after linear time preprocessing:

- For input db $D = (adom(D), E^D, S^D, T^D)$
- Compute $E_1 := \{(x, y) \in E^D : x \in S^D\}$
- Compute $E_2 := \{(x, y) \in E_1 : y \in T^D\}$
- Output E_2

Same approach works for the acyclic CQ

$$\varphi_{E-T}(x) := \exists y (E(x,y) \wedge T(y)).$$

But apparently not for the acyclic CQ

$$\varphi_{AB}(x,y) := \exists z (A(x,z) \land B(z,y))$$

otherwise, Boolean Matrix Multiplication (for two $n \times n$ matrices A and B) could be solved in time $O(n^2)$, contradicting an algorithmic assumption. n = |adom(D)|

Nicole Schweikardt (HU Berlin)

Definition: A CQ φ is acyclic if there exists a join tree, i.e., a tree t whose nodes are exactly the atoms of φ , and where for any two nodes u, v the following is true for every common variable y of u and v: y occurs in every node on the path between u and v in t.

Definition: A CQ φ is acyclic if there exists a join tree, i.e., a tree t whose nodes are exactly the atoms of φ , and where for any two nodes u, v the following is true for every common variable y of u and v: y occurs in every node on the path between u and v in t.

Definition: φ is free-connex if the following two queries are acyclic: φ and the query φ' obtained from φ by adding an atom of the form $R(\overline{x})$ that contains all free variables of φ [Brault-Baron 2013]

Definition: A CQ φ is acyclic if there exists a join tree, i.e., a tree t whose nodes are exactly the atoms of φ , and where for any two nodes u, v the following is true for every common variable y of u and v: y occurs in every node on the path between u and v in t.

Definition: φ is free-connex if the following two queries are acyclic: φ and the query φ' obtained from φ by adding an atom of the form $R(\overline{x})$ that contains all free variables of φ [Brault-Baron 2013]

Theorem (Bagan, Durand, Grandjean 2007) Let $\varphi(x_1, \ldots, x_k)$ be an acyclic CQ.

If φ is free-connex, then $\varphi(D)$ can be enumerated with constant delay after linear preprocessing.

Definition: A CQ φ is acyclic if there exists a join tree, i.e., a tree t whose nodes are exactly the atoms of φ , and where for any two nodes u, v the following is true for every common variable y of u and v: y occurs in every node on the path between u and v in t.

Definition: φ is free-connex if the following two queries are acyclic: φ and the query φ' obtained from φ by adding an atom of the form $R(\overline{x})$ that contains all free variables of φ [Brault-Baron 2013]

Theorem (Bagan, Durand, Grandjean 2007) Let $\varphi(x_1, \ldots, x_k)$ be an acyclic CQ.

If φ is free-connex, then $\varphi(D)$ can be enumerated with constant delay after linear preprocessing.

If φ is self-join free and not free-connex, then it is not possible to enumerate $\varphi(D)$ with constant delay after linear preprocessing, unless Boolean Matrix Multiplication can be done in time $O(n^2)$.

Nicole Schweikardt (HU Berlin)

Queries that are easy in the static setting can be difficult for the dynamic setting!

Example:
$$\varphi_{E-T}(x) := \exists y (E(x,y) \land T(y)).$$

Why? — See the next few slides:

Introduce the notion of q-hierarchical CQs, which captures the easy CQs in the dynamic setting

Dalvi & Suciu (2007) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs.

Dalvi & Suciu (2007) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs.

q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.

Dalvi & Suciu (2007) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs.

q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.

Definition: A CQ $\varphi(z_1, ..., z_k)$ is q-hierarchical if for all variables x, y of φ the following is satisfied:

(i) $\operatorname{atoms}(x) \subseteq \operatorname{atoms}(y)$ or $\operatorname{atoms}(y) \subseteq \operatorname{atoms}(x)$ or $\operatorname{atoms}(x) \cap \operatorname{atoms}(y) = \emptyset$, and

(ii) if $\operatorname{atoms}(x) \subsetneq \operatorname{atoms}(y)$ and $x \in \operatorname{free}(\varphi)$, then $y \in \operatorname{free}(\varphi)$.

Dalvi & Suciu (2007) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs.

q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.

Definition: A CQ $\varphi(z_1, ..., z_k)$ is q-hierarchical if for all variables x, y of φ the following is satisfied:

(i) $\operatorname{atoms}(x) \subseteq \operatorname{atoms}(y)$ or $\operatorname{atoms}(y) \subseteq \operatorname{atoms}(x)$ or $\operatorname{atoms}(x) \cap \operatorname{atoms}(y) = \emptyset$, and

(ii) if $\operatorname{atoms}(x) \subsetneq \operatorname{atoms}(y)$ and $x \in \operatorname{free}(\varphi)$, then $y \in \operatorname{free}(\varphi)$.

Queries that are not q-hierarchical:

 $\psi_{S-E-T}() := \exists x \exists y (S(x) \land E(x,y) \land T(y))$

q-hierarchical CQs

Dalvi & Suciu (2007) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs.

q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.

Definition: A CQ $\varphi(z_1, ..., z_k)$ is q-hierarchical if for all variables x, y of φ the following is satisfied:

(i) $\operatorname{atoms}(x) \subseteq \operatorname{atoms}(y)$ or $\operatorname{atoms}(y) \subseteq \operatorname{atoms}(x)$ or $\operatorname{atoms}(x) \cap \operatorname{atoms}(y) = \emptyset$, and

(ii) if $\operatorname{atoms}(x) \subsetneq \operatorname{atoms}(y)$ and $x \in \operatorname{free}(\varphi)$, then $y \in \operatorname{free}(\varphi)$.

Queries that are not q-hierarchical:

 $\psi_{S-E-T}() := \exists x \exists y (S(x) \land E(x,y) \land T(y))$ $\varphi_{S-E-T}(x,y) := S(x) \land E(x,y) \land T(y)$ q-hierarchical CQs

Dalvi & Suciu (2007) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs.

q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.

Definition: A CQ $\varphi(z_1, ..., z_k)$ is q-hierarchical if for all variables x, y of φ the following is satisfied:

(i) $\operatorname{atoms}(x) \subseteq \operatorname{atoms}(y)$ or $\operatorname{atoms}(y) \subseteq \operatorname{atoms}(x)$ or $\operatorname{atoms}(x) \cap \operatorname{atoms}(y) = \emptyset$, and

(ii) if $\operatorname{atoms}(x) \subsetneq \operatorname{atoms}(y)$ and $x \in \operatorname{free}(\varphi)$, then $y \in \operatorname{free}(\varphi)$.

Queries that are not q-hierarchical:

 $\psi_{S-E-T}() := \exists x \exists y (S(x) \land E(x, y) \land T(y))$ $\varphi_{S-E-T}(x, y) := S(x) \land E(x, y) \land T(y)$ $\varphi_{E-T}(x) := \exists y (E(x, y) \land T(y))$

q-hierarchical CQs

Dalvi & Suciu (2007) introduced the hierarchical CQs to characterise the Boolean CQs that can be answered in PTIME on probabilistic dbs.

q-hierarchical CQs are hierarchical CQs where, additionally, the quantifiers respect the query's hierarchical form.

Definition: A CQ $\varphi(z_1, ..., z_k)$ is q-hierarchical if for all variables x, y of φ the following is satisfied:

(i) $\operatorname{atoms}(x) \subseteq \operatorname{atoms}(y)$ or $\operatorname{atoms}(y) \subseteq \operatorname{atoms}(x)$ or $\operatorname{atoms}(x) \cap \operatorname{atoms}(y) = \emptyset$, and

(ii) if $atoms(x) \subsetneq atoms(y)$ and $x \in free(\varphi)$, then $y \in free(\varphi)$.

Queries that are not q-hierarchical:

 $\begin{aligned} \psi_{S-E-T}() &:= \exists x \exists y (S(x) \land E(x,y) \land T(y)) \\ \varphi_{S-E-T}(x,y) &:= S(x) \land E(x,y) \land T(y) \\ \varphi_{E-T}(x) &:= \exists y (E(x,y) \land T(y)) \end{aligned}$

A q-hierarchical query:

$$\theta_{E-T}(y) := \exists x (E(x,y) \land T(y))$$

Nicole Schweikardt (HU Berlin)

Enumeration

The OMv-problem:

[Henzinger et al. 2015]

Input: a Boolean $n \times n$ -matrix M and a stream v_1, \ldots, v_n of n-dimensional Boolean vectors Task: output Mv_ℓ before accessing $v_{\ell+1}$

The OMv-problem:

[Henzinger et al. 2015]

Input: a Boolean $n \times n$ -matrix M and a stream v_1, \ldots, v_n of n-dimensional Boolean vectors Task: output Mv_ℓ before accessing $v_{\ell+1}$ OMv-Conjecture: For every $\epsilon > 0$, there is no algorithm that solves the OMv-problem in total time $O(n^{3-\epsilon})$

The OMv-problem:

[Henzinger et al. 2015]

Input: a Boolean $n \times n$ -matrix M and a stream v_1, \ldots, v_n of n-dimensional Boolean vectors Task: output Mv_ℓ before accessing $v_{\ell+1}$ OMv-Conjecture: For every $\epsilon > 0$, there is no algorithm that solves the OMv-problem in total time $O(n^{3-\epsilon})$

Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

The OMv-problem:

[Henzinger et al. 2015]

Input: a Boolean $n \times n$ -matrix M and a stream v_1, \ldots, v_n of n-dimensional Boolean vectors Task: output Mv_ℓ before accessing $v_{\ell+1}$ OMv-Conjecture: For every $\epsilon > 0$, there is no algorithm that solves the OMv-problem in total time $O(n^{3-\epsilon})$

Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

Theorem (Enumeration): [Berkholz, Keppeler, S., 2017] Let $\epsilon > 0$ and let $\varphi(\overline{x})$ be a self-join free CQ that is not q-hierarchical. Then, there is no algorithm with arbitrary preprocessing time and $t_{\mu} = O(n^{1-\epsilon})$ update time that enumerates $\varphi(D)$ with

 $t_d = O(n^{1-\epsilon})$ delay, unless the OMv-conjecture fails.

The OMv-problem:

[Henzinger et al. 2015]

Input: a Boolean $n \times n$ -matrix M and a stream v_1, \ldots, v_n of n-dimensional Boolean vectors Task: output Mv_ℓ before accessing $v_{\ell+1}$ OMv-Conjecture: For every $\epsilon > 0$, there is no algorithm that solves the OMv-problem in total time $O(n^{3-\epsilon})$

Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

Theorem (Enumeration): [Berkholz, Keppeler, S., 2017] Let $\epsilon > 0$ and let $\varphi(\overline{x})$ be a self-join free CQ that is not g-hierarchical.

Then, there is no algorithm with arbitrary preprocessing time and $t_u = O(n^{1-\epsilon})$ update time that enumerates $\varphi(D)$ with $t_d = O(n^{1-\epsilon})$ delay, unless the OMv-conjecture fails.

Proof idea for
$$\varphi_{E-T}(x) := \exists y (E(x,y) \land T(y))$$

Nicole Schweikardt (HU Berlin)

Enumeration

Proof idea for $\varphi_{E-T}(x) := \exists y (E(x, y) \land T(y))$

A lower bound for enumerating via OMv

Input: Boolean $n \times n$ matrix M and stream v_1, \ldots, v_n of n-dimensional Boolean vectors.

Task: output Mv_{ℓ} before accessing $v_{\ell+1}$

Proof idea for $\varphi_{E-T}(x) := \exists y (E(x, y) \land T(y))$

A lower bound for enumerating via OMv

Input: Boolean $n \times n$ matrix M and stream v_1, \ldots, v_n of n-dimensional Boolean vectors.

Task: output Mv_{ℓ} before accessing $v_{\ell+1}$

Given $n \times n$ matrix M, let

►
$$E^{D_0} := \{ (i,j) \in [n]^2 : M(i,j) = 1 \}, T^{D_0} := \emptyset$$

Create data structure for D_0 in time $n^2 \cdot n^{1-\epsilon}$.

Input: Boolean $n \times n$ matrix M and stream v_1, \ldots, v_n of n-dimensional Boolean vectors.

Task: output Mv_{ℓ} before accessing $v_{\ell+1}$

Given $n \times n$ matrix M, let

►
$$E^{D_0} := \{ (i,j) \in [n]^2 : M(i,j) = 1 \}, T^{D_0} := \emptyset$$

Create data structure for D_0 in time $n^2 \cdot n^{1-\epsilon}$.

Given *n*-dim. vector v_{ℓ} , update

►
$$T^{D_{\ell}} := \{ i \in [n] : v_{\ell}(i) = 1 \}.$$

in time $n \cdot n^{1-\varepsilon}$.

Input: Boolean $n \times n$ matrix M and stream v_1, \ldots, v_n of n-dimensional Boolean vectors.

Task: output Mv_{ℓ} before accessing $v_{\ell+1}$

Given $n \times n$ matrix M, let

►
$$E^{D_0} := \{ (i,j) \in [n]^2 : M(i,j) = 1 \}, T^{D_0} := \emptyset$$

Create data structure for D_0 in time $n^2 \cdot n^{1-\epsilon}$.

Given *n*-dim. vector v_{ℓ} , update

►
$$T^{D_{\ell}} := \{ i \in [n] : v_{\ell}(i) = 1 \}.$$

in time $n \cdot n^{1-\varepsilon}$. For $u_{\ell} := Mv_{\ell}$ we have:

•
$$\varphi_{E-T}(D_{\ell}) = \{ i \in [n] : u_{\ell}(i) = 1 \}$$

Nicole Schweikardt (HU Berlin)

Input: Boolean $n \times n$ matrix M and stream v_1, \ldots, v_n of n-dimensional Boolean vectors.

Task: output Mv_{ℓ} before accessing $v_{\ell+1}$

Given $n \times n$ matrix M, let

►
$$E^{D_0} := \{ (i,j) \in [n]^2 : M(i,j) = 1 \}, T^{D_0} := \emptyset$$

Create data structure for D_0 in time $n^2 \cdot n^{1-\epsilon}$.

Given *n*-dim. vector v_{ℓ} , update

►
$$T^{D_{\ell}} := \{ i \in [n] : v_{\ell}(i) = 1 \}.$$

in time $n \cdot n^{1-\varepsilon}$. For $u_{\ell} := Mv_{\ell}$ we have:

•
$$\varphi_{E-T}(D_{\ell}) = \{ i \in [n] : u_{\ell}(i) = 1 \}$$

and can output u_{ℓ} after enumerating $\varphi_{E-T}(D_{\ell})$ in time $n \cdot n^{1-\varepsilon}$.

Input: Boolean $n \times n$ matrix M and stream v_1, \ldots, v_n of n-dimensional Boolean vectors.

Task: output Mv_{ℓ} before accessing $v_{\ell+1}$

Given $n \times n$ matrix M, let

►
$$E^{D_0} := \{ (i,j) \in [n]^2 : M(i,j) = 1 \}, T^{D_0} := \emptyset$$

Create data structure for D_0 in time $n^2 \cdot n^{1-\epsilon}$.

Given *n*-dim. vector v_{ℓ} , update

►
$$T^{D_{\ell}} := \{ i \in [n] : v_{\ell}(i) = 1 \}.$$

in time $n \cdot n^{1-\varepsilon}$. For $u_{\ell} := Mv_{\ell}$ we have:

•
$$\varphi_{E-T}(D_{\ell}) = \{ i \in [n] : u_{\ell}(i) = 1 \}$$

and can output u_{ℓ} after enumerating $\varphi_{E-T}(D_{\ell})$ in time $n \cdot n^{1-\varepsilon}$. This solves OMv in total time $O(n^{3-\varepsilon})$ $\not\in$

Nicole Schweikardt (HU Berlin)

The OuMv-problem:

[Henzinger et al. 2015]

Input: a Boolean $n \times n$ -matrix M and a stream $u_1, v_1, \ldots, u_n, v_n$ of n-dimensional Boolean vectors Task: output $(u_\ell)^T M v_\ell$ before accessing $u_{\ell+1}, v_{\ell+1}$ OuMv-Conjecture: For every $\epsilon > 0$, there is no algorithm that solves the OuMv-problem in total time $O(n^{3-\epsilon})$

The OuMv-problem:

[Henzinger et al. 2015]

Input: a Boolean $n \times n$ -matrix M and a stream $u_1, v_1, \ldots, u_n, v_n$ of n-dimensional Boolean vectors Task: output $(u_\ell)^T M v_\ell$ before accessing $u_{\ell+1}, v_{\ell+1}$ OuMv-Conjecture: For every $\epsilon > 0$, there is no algorithm that solves the OuMv-problem in total time $O(n^{3-\epsilon})$ Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

The OuMv-problem:[Henzinger et al. 2015]Input: a Boolean $n \times n$ -matrix M and
a stream $u_1, v_1, \ldots, u_n, v_n$ of n-dimensional Boolean vectorsTask: output $(u_\ell)^T M v_\ell$ before accessing $u_{\ell+1}, v_{\ell+1}$ OuMv-Conjecture: For every $\epsilon > 0$, there is no algorithm that
solves the OuMv-problem in total time $O(n^{3-\epsilon})$ Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

Theorem (Boolean): [Berkholz, Keppeler, S., 2017] Fix an $\epsilon > 0$ and let φ be a Boolean CQ whose homomorphic core is not q-hierarchical. Then, there is no algorithm with arbitrary preprocessing time and $t_u = O(n^{1-\epsilon})$ update time that answers $\varphi(D)$ in time $t_a = O(n^{2-\epsilon})$, unless the OuMv-conjecture fails.

Nicole Schweikardt (HU Berlin)

The OuMv-problem:[Henzinger et al. 2015]Input: a Boolean $n \times n$ -matrix M and
a stream $u_1, v_1, \ldots, u_n, v_n$ of n-dimensional Boolean vectorsTask: output $(u_\ell)^T M v_\ell$ before accessing $u_{\ell+1}, v_{\ell+1}$ OuMv-Conjecture: For every $\epsilon > 0$, there is no algorithm that
solves the OuMv-problem in total time $O(n^{3-\epsilon})$ Fails for offline algorithms if we receive all vectors at once: fast matrix multiplication!

Theorem (Boolean): [Berkholz, Keppeler, S., 2017] Fix an $\epsilon > 0$ and let φ be a Boolean CQ whose homomorphic core is not q-hierarchical. Then, there is no algorithm with arbitrary preprocessing time and $t_u = O(n^{1-\epsilon})$ update time that answers $\varphi(D)$ in time $t_a = O(n^{2-\epsilon})$, unless the OuMv-conjecture fails.

Proof idea for $\psi_{S-E-T} := \exists x \exists y (S(x) \land E(x,y) \land T(y))$

Nicole Schweikardt (HU Berlin)

Enumeration

The OV-problem: [cf. R. Williams, 2005] Input: two sets U and V of n Boolean vectors of dimension $d := \lceil \log^2 n \rceil$ Task: decide if there exist $u \in U$ and $v \in V$ with $u^{\mathsf{T}}v = 0$ OV-Conjecture: For every $\epsilon > 0$, there is no algorithm that solves the OV-problem in time $O(n^{2-\epsilon})$

The OV-problem: [cf. R. Williams, 2005] Input: two sets U and V of n Boolean vectors of dimension $d := \lceil \log^2 n \rceil$ Task: decide if there exist $u \in U$ and $v \in V$ with $u^{\mathsf{T}}v = 0$ OV-Conjecture: For every $\epsilon > 0$, there is no algorithm that solves the OV-problem in time $O(n^{2-\epsilon})$

Theorem (Counting): [Berkholz, Keppeler, S., PODS'17] Let $\epsilon > 0$ and let $\varphi(\overline{x})$ be a CQ whose homomorphic core is not q-hierarchical. Then, there is no algorithm with arbitrary preprocessing time and $t_u = O(n^{1-\epsilon})$ update time that computes $|\varphi(D)|$ in time $t_c = O(n^{1-\epsilon})$, unless the OV-conjecture or the OuMv-conjecture fails.

The OV-problem: [cf. R. Williams, 2005] Input: two sets U and V of n Boolean vectors of dimension $d := \lceil \log^2 n \rceil$ Task: decide if there exist $u \in U$ and $v \in V$ with $u^{\mathsf{T}}v = 0$ OV-Conjecture: For every $\epsilon > 0$, there is no algorithm that solves the OV-problem in time $O(n^{2-\epsilon})$

Theorem (Counting): [Berkholz, Keppeler, S., PODS'17] Let $\epsilon > 0$ and let $\varphi(\overline{x})$ be a CQ whose homomorphic core is not q-hierarchical. Then, there is no algorithm with arbitrary preprocessing time and

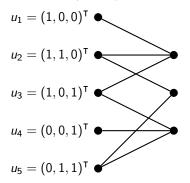
Then, there is no algorithm with arbitrary preprocessing time and $t_u = O(n^{1-\epsilon})$ update time that computes $|\varphi(D)|$ in time $t_c = O(n^{1-\epsilon})$, unless the OV-conjecture or the OuMv-conjecture fails.

Proof idea for $\varphi_{E-T}(x) := \exists y (E(x,y) \land T(y))$

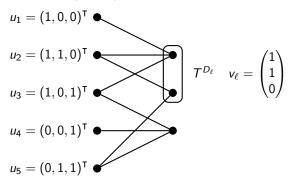
Nicole Schweikardt (HU Berlin)

Enumeration

Left: *n* vertices for the *n* vectors $u \in U$ Right: $d := \lceil \log^2 n \rceil$ vertices for vector-coordinates



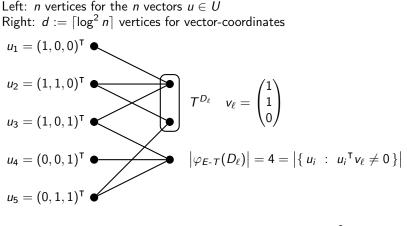
Left: *n* vertices for the *n* vectors $u \in U$ Right: $d := \lceil \log^2 n \rceil$ vertices for vector-coordinates



▶ for each $v_{\ell} \in V$: update $T^{D_{\ell}}$ in time $d \cdot n^{1-\epsilon} = \lceil \log^2 n \rceil n^{1-\epsilon}$

Nicole Schweikardt (HU Berlin)

Enumeration

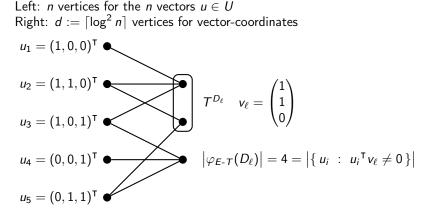


▶ for each $v_{\ell} \in V$: update $T^{D_{\ell}}$ in time $d \cdot n^{1-\epsilon} = \lceil \log^2 n \rceil n^{1-\epsilon}$

▶ there is $u_i \in U$ with $u_i^T v_\ell = 0 \iff |\varphi_{E-T}(D_\ell)| < n$.

Nicole Schweikardt (HU Berlin)

Enumeration



▶ for each $v_{\ell} \in V$: update $T^{D_{\ell}}$ in time $d \cdot n^{1-\epsilon} = \lceil \log^2 n \rceil n^{1-\epsilon}$

► there is $u_i \in U$ with $u_i^{\mathsf{T}} v_\ell = 0 \iff |\varphi_{E-\mathcal{T}}(D_\ell)| < n$.

► finished for all $v_{\ell} \in V$ within time $n \cdot \lceil \log^2 n \rceil n^{1-\varepsilon} = n^{2-\varepsilon'}$ f Nicole Schweikardt (HU Berlin) Enumeration Efficient evaluation of a fragment of CQs

Theorem (Upper bound) [Berkholz, Keppeler, S. 2017]: For every CQ that is q-hierarchical, there is a dynamic data structure that has constant update time and allows to

Efficient evaluation of a fragment of CQs

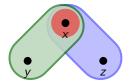
Theorem (Upper bound)

[Berkholz, Keppeler, S. 2017]:

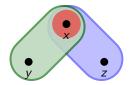
For every CQ that is q-hierarchical, there is a dynamic data structure that has constant update time and allows to

- answer a Boolean CQ,
- count the number of result tuples,
- enumerate the result relation with constant delay.

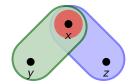
 $\varphi(x, y, z) := R(x) \wedge E(x, y) \wedge F(x, z)$



$$\begin{aligned} \varphi(x, y, z) &:= R(x) \land E(x, y) \land F(x, z) \\ |\varphi(D)| &= \sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)| \end{aligned}$$

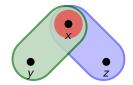


 $\begin{aligned} \varphi(x, y, z) &:= \mathbf{R}(x) \land E(x, y) \land F(x, z) \\ |\varphi(D)| &= \sum_{v \in \mathbb{R}^D} |N_E^+(v)| \cdot |N_F^+(v)| \end{aligned}$



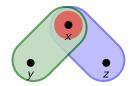
► COUNT: store $|N_E^+(v)|$, $|N_F^+(v)|$, $\sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)|$

$$\begin{aligned} \varphi(x, y, z) &:= R(x) \land E(x, y) \land F(x, z) \\ |\varphi(D)| &= \sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)| \end{aligned}$$

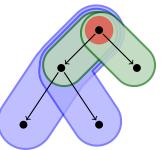


- ► COUNT: store $|N_E^+(v)|$, $|N_F^+(v)|$, $\sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)|$
- ► ENUM: store $N_E^+(v)$, $N_F^+(v)$ as lists with constant access, for $v \in R^D$ report $\{v\} \times N_E^+(v) \times N_F^+(v)$

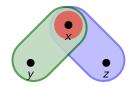
$$\begin{aligned} \varphi(x, y, z) &:= R(x) \land E(x, y) \land F(x, z) \\ |\varphi(D)| &= \sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)| \end{aligned}$$



- ► COUNT: store $|N_E^+(v)|$, $|N_F^+(v)|$, $\sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)|$
- ► ENUM: store $N_E^+(v)$, $N_F^+(v)$ as lists with constant access, for $v \in R^D$ report $\{v\} \times N_E^+(v) \times N_F^+(v)$



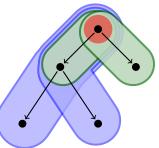
$$\begin{aligned} \varphi(x, y, z) &:= R(x) \land E(x, y) \land F(x, z) \\ |\varphi(D)| &= \sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)| \end{aligned}$$



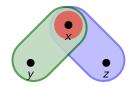
- ► COUNT: store $|N_E^+(v)|$, $|N_F^+(v)|$, $\sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)|$
- ► ENUM: store $N_E^+(v)$, $N_F^+(v)$ as lists with constant access, for $v \in R^D$ report $\{v\} \times N_E^+(v) \times N_F^+(v)$

Definition (q-tree):

A q-tree T for a CQ $\varphi(x_1, \ldots, x_\ell)$ is a rooted tree with $V(T) = vars(\varphi)$ and



$$\begin{aligned} \varphi(x, y, z) &:= R(x) \land E(x, y) \land F(x, z) \\ |\varphi(D)| &= \sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)| \end{aligned}$$

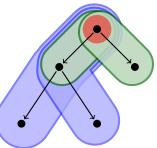


- ► COUNT: store $|N_E^+(v)|$, $|N_F^+(v)|$, $\sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)|$
- ► ENUM: store $N_E^+(v)$, $N_F^+(v)$ as lists with constant access, for $v \in R^D$ report $\{v\} \times N_E^+(v) \times N_F^+(v)$

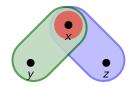
Definition (q-tree):

A q-tree T for a CQ $\varphi(x_1, \ldots, x_\ell)$ is a rooted tree with $V(T) = vars(\varphi)$ and

1. for every $R(y_1, \ldots, y_r)$ in φ : $\{y_1, \ldots, y_r\}$ forms a path in T that starts at the root



$$\begin{aligned} \varphi(x, y, z) &:= R(x) \land E(x, y) \land F(x, z) \\ |\varphi(D)| &= \sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)| \end{aligned}$$

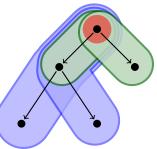


- ► COUNT: store $|N_E^+(v)|$, $|N_F^+(v)|$, $\sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)|$
- ► ENUM: store $N_E^+(v)$, $N_F^+(v)$ as lists with constant access, for $v \in R^D$ report $\{v\} \times N_E^+(v) \times N_F^+(v)$

Definition (q-tree):

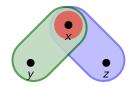
A q-tree T for a CQ $\varphi(x_1, \ldots, x_\ell)$ is a rooted tree with $V(T) = vars(\varphi)$ and

- 1. for every $R(y_1, \ldots, y_r)$ in φ : $\{y_1, \ldots, y_r\}$ forms a path in T that starts at the root
- 2. the free variables $\{x_1, \ldots, x_\ell\}$ form a connected subtree that contains the root



q-hierarchical queries

$$\begin{aligned} \varphi(x, y, z) &:= R(x) \land E(x, y) \land F(x, z) \\ |\varphi(D)| &= \sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)| \end{aligned}$$



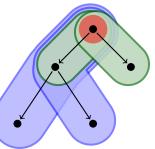
- ► COUNT: store $|N_E^+(v)|$, $|N_F^+(v)|$, $\sum_{v \in R^D} |N_E^+(v)| \cdot |N_F^+(v)|$
- ► ENUM: store $N_E^+(v)$, $N_F^+(v)$ as lists with constant access, for $v \in R^D$ report $\{v\} \times N_E^+(v) \times N_F^+(v)$

Definition (q-tree):

A q-tree T for a CQ $\varphi(x_1, \ldots, x_\ell)$ is a rooted tree with $V(T) = vars(\varphi)$ and

- 1. for every $R(y_1, \ldots, y_r)$ in φ : $\{y_1, \ldots, y_r\}$ forms a path in T that starts at the root
- 2. the free variables $\{x_1, \ldots, x_\ell\}$ form a connected subtree that contains the root

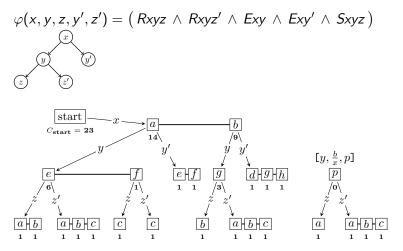
Lemma: A CQ $\varphi(\overline{x})$ is q-hierarchical \iff every connected component of $\varphi(\overline{x})$ has a q-tree.



Data structure for q-hierarchical queries

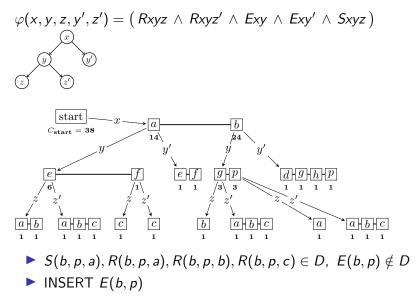
$$\varphi(x, y, z, y', z') = (Rxyz \land Rxyz' \land Exy \land Exy' \land Sxyz)$$

Data structure for q-hierarchical queries



► $S(b, p, a), R(b, p, a), R(b, p, b), R(b, p, c) \in D, E(b, p) \notin D$

Data structure for q-hierarchical queries



Overview

Introduction

First-Order Queries

Conjunctive Queries

Final Remarks

Nicole Schweikardt (HU Berlin)

Positive Results for FO-Queries (static setting: without updates)

Constant delay enumeration after pseudo-linear time preprocessing is possible for all FO-queries φ on db-class *C*, if

C has bounded de	gree	[Durand, Grandjean 2007]
► C has bounded tre	e-width	[Bagan 2006]
C has bounded ex	oansion	[Kazana, Segoufin 2013]
C has locally bound	ded expansion	[Segoufin, Vigny 2017]
C is nowhere dense	e	[S., Segoufin, Vigny 2018]
For any subgraph-closed class C that is not nowhere dense, evaluation of Boolean FO-queries is not possible in time $f(\ \varphi\)\ D\ ^{O(1)}$ (assuming FPT \neq W[1]) [Kreutzer 2011, Dvořák, Král, Thomas 2010]		

C has low degree

[Durand, S., Segoufin 2014]

i.e., for each $\delta > 0$, all sufficiently large D in C have degree $\leq \|D\|^{\delta}$.

Some such C are not nowhere dense (and not subgraph-closed).

Open: To which extensions of FO can this be generalised? Which results can be extended to the dynamic setting?

Nicole Schweikardt (HU Berlin)

enumeration for CQs ?

enumeration for CQs ?

 Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)

enumeration for CQs ?

- Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- ► the dynamic setting ?

enumeration for CQs ?

- Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)

- enumeration for CQs ?
 - Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)
 - Dan Olteanu, Ahmet Kara et al. on factorised databases

- enumeration for CQs ?
 - Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)
 - Dan Olteanu, Ahmet Kara et al. on factorised databases
 - Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth: Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019: 89-103

- enumeration for CQs ?
 - Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)
 - Dan Olteanu, Ahmet Kara et al. on factorised databases
 - Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth: Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019: 89-103
- enumeration for other data models ?

- enumeration for CQs ?
 - Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)
 - Dan Olteanu, Ahmet Kara et al. on factorised databases
 - Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth: Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019: 89-103
- enumeration for other data models ? Check recent work on
 - regular document spanners:

- enumeration for CQs ?
 - Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)
 - Dan Olteanu, Ahmet Kara et al. on factorised databases
 - Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth: Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019: 89-103
- enumeration for other data models ? Check recent work on
 - regular document spanners: Florenzano et al. PODS'18,

- enumeration for CQs ?
 - Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)
 - Dan Olteanu, Ahmet Kara et al. on factorised databases
 - Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth: Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019: 89-103
- enumeration for other data models ? Check recent work on
 - regular document spanners: Florenzano et al. PODS'18, Amarilli et al. ICDT'19,

- enumeration for CQs ?
 - Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)
 - Dan Olteanu, Ahmet Kara et al. on factorised databases
 - Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth: Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019: 89-103

enumeration for other data models ? Check recent work on

regular document spanners: Florenzano et al. PODS'18, Amarilli et al. ICDT'19, Schmidt & S. PODS'21&'22

- enumeration for CQs ?
 - Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)
 - Dan Olteanu, Ahmet Kara et al. on factorised databases
 - Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth: Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019: 89-103

enumeration for other data models ? Check recent work on

- regular document spanners: Florenzano et al. PODS'18, Amarilli et al. ICDT'19, Schmidt & S. PODS'21&'22
- generalisations:

- enumeration for CQs ?
 - Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)
 - Dan Olteanu, Ahmet Kara et al. on factorised databases
 - Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth: Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019: 89-103

enumeration for other data models ? Check recent work on

- regular document spanners: Florenzano et al. PODS'18, Amarilli et al. ICDT'19, Schmidt & S. PODS'21&'22
- generalisations: Amarilli et al. PODS'22, Munoz & Riveros ICDT'22

- enumeration for CQs ?
 - Christoph Berkholz, Fabian Gerhardt, Nicole Schweikardt: Constant delay enumeration for conjunctive queries: a tutorial. ACM SIGLOG News 7(1): 4-33 (2020)
- the dynamic setting ? Check work by
 - Idris, Ugarte, Vansummeren on the dynamic Yannakakis algorithm (SIGMOD'17)
 - Dan Olteanu, Ahmet Kara et al. on factorised databases
 - Antoine Amarilli, Pierre Bourhis, Stefan Mengel, Matthias Niewerth: Enumeration on Trees with Tractable Combined Complexity and Efficient Updates. PODS 2019: 89-103

enumeration for other data models ? Check recent work on

- regular document spanners: Florenzano et al. PODS'18, Amarilli et al. ICDT'19, Schmidt & S. PODS'21&'22
- generalisations: Amarilli et al. PODS'22, Munoz & Riveros ICDT'22

- Thank you for your attention! -

Nicole Schweikardt (HU Berlin)