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Data

▸ Data is used everywhere and abundant (“big data”).

Source: Dresner Advisory Services LLC, Big Data Analytics Market Survey, 2017

▸ Data is valuable.

“ The world’s most valuable resource is no longer oil, but data ” (The economist, 2017)
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The Importance of (Clean) Data

▸ Data underlies decision making.

“ Without algorithms and data at the center of their decision-making, traditional companies
cannot compete with today’s digital giants.” (Chief Executive Magazine, 2019)

▸ Data is key for data analytics and machine learning, i.e., to derive value from data.

“If you train your machine learning models with garbage, it’s no surprise you’ll get garbage
results.” (The Achilles Heel of AI, Forbes 2019)

The need for clean data
▸ Value derived from data is as good as the data itself.
▸ Garbage in, garbage out.
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Data Quality: Dirty data is Costly

▸ Poor data costs US companies $600 billions annually.

▸ Erroneously priced data in retail databases costs US customers $2.5 billion each year.

▸ 30% – 80% of the development time for data cleaning in a data integration project and most AI
and Machine Learning projects.

▸ The market for AI and machine learning relevant data preparation solutions is over $500 million in
2018 growing to $1.2 billion by end of 2023.

▸ This is true in all sectors dealing with data.

Important problem
▸ Data quality: A very important problem for data management, data engineers and data scientists

(and everyone else...).
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Data Quality: When Things Go Wrong

▸ Dirty data comes in many different forms...

Dirty data

(Date of example: 2017)

▸ The same is true for non-relational data, such as text files, time series, ...
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Dirty Data: Taxonomy

RE. Rahm & H.H. Do, Data Cleaning: Problems and Current Approaches, IEEE Data Eng. Bull, 2000.
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Dirty Data: Sources

Sources of dirty data?

▸ At time of data entry: human error, crowd, imprecise signal/sensors, ....

▸ Conflicts when data is merged, copied and/or integrated.

▸ Updated data or not updated data at all (staleness).

▸ ...

▸ Best solution for ensuring good data quality is prevention!!

Unfortunately, irregardless of all efforts, dirty data is everywhere and data cleaning is needed!
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Data Cleaning Pipeline

▸ A high-level – and very simplistic– overview of the overall data cleaning pipeline:

D

Data Error detection Data repairing

Human-in-the-loop
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Data Cleaning: Approaches

▸ There is no one-size-fits-all solution to data quality.

outlier 
detection standardization tool 1

tool 2

tool 3

tool 4

C++
 script 1

Java 
script 2

python 
script 3

data analytics 
tool

▸ Understanding tools and code is difficult.
▸ Different components hard to integrate.
▸ Interpreting results and debugging is almost impossible.
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Data Quality: A Declarative Approach

▸ A more principled approach to data cleaning is desirable!

▸ The cleaning process should be augmented with a specification indicating which data is dirty/clean.

▸ The specification should be used uniformly across the entire data quality pipeline.

▸ Specification should (preferably) be declarative,1 allowing to focus on semantics rather than im-
plementation details and increases explainability.

1Declarative: Logic ↔ Procedural: Algebra
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Plan for this Lecture

▸ I’ll next give a general overview of the declarative approach to data quality.

▸ Focus on relational data only.

▸ Mostly deterministic, i.e., pieces of data are either dirty or not.
RBenny’s lecture for a more fine-grained quantitive approach to violations.
RAntoine’s lecture for a probabilistic model for dirty data.

▸ Provide a recipe of how to use this approach for your own data quality problem.
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Overview

Declarative Approach
Key Challenges
Static Analysis
Error Detection
Constraint Discovery
Data Repairing
Conclusion
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Declarative Approach to Data Quality

Key idea

Express semantic properties of clean data as logical expressions.

▸ Typically, small fragments of first-order logic are considered.
▸ Sometimes, built-in predicates are added.
▸ Tradeoff between simplicity of expressions, expressive power and computational complexity of

decision problems (satisfiability, implication).
▸ In the context of data quality:

logical sentences=data quality constraints
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Tuple Relational Calculus

In this talk, we use the tuple relational calculus (TRC) and extensions thereof instead of first-order
logic to express constraints.

Functional dependency

∀r, s (R(r) ∧ R(s) ∧ r[A] = s[A]→ r[B] = s[B]).

Definition (TRC formulas)
Alphabet: – Relation names R,S,T, . . . with certain attributes

– Tuple variables r, s, t, . . .
Terms: – constants

– t[A] for tuple variable t and attribute A
Atomic formulas: – R(r) for relation name R and tuple variable r

– u1 = u2 when u1 and u2 are terms
Formulas: – Atomic formulas

– If φ1 and φ2 are formulas, then ¬φ1, φ1 ∧ φ2, φ1 ∨ φ2, φ1 → φ2 are formulas.
– If φ is a formula, then ∃rφ and ∀rφ are formulas.
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TRC Semantics and Satisfaction

▸ The semantics of TRC formulas on a database instance is defined inductively, as one would expect.
▸ Sentences are TRC formulas that evaluate to true or false.

Constraints
TRC sentences will be called constraints from here on.

Definition (Satisfaction)
▸ Let D be a database and φ be a constraint, then D ⊧ φ denotes that D satisfies φ, or φ evaluates

to true on D.
▸ If Σ is a set of constraints, D ⊧ Σ if D ⊧ φ for all φ ∈ Σ.

Functional dependency

φ = ∀r, s (R(r) ∧ R(s) ∧ r[A] = s[A]→ r[B] = s[B]).
Its semantics: If D ⊧ φ then all tuples in D with the same A-attribute value have the same B-attribute
value.
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So What is Clean (Dirty) Data?

Our point of view to data quality:

Clean/Dirty Data
Given:
▸ a database D; and
▸ a set Σ of constraints,

we say that D is Σ-clean (or simply clean) if D ⊧ Σ. Otherwise, D is said to be dirty.

This definition promotes:

▸ First-order logic as a specification language for data quality.
▸ In practice, full first-order logic is not used and constraints are often of a simple form.
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Errors are Violations of Constraints

Violations
When D is dirty, i.e., D /⊧ Σ, and hence there must be tuples causing some constraints not to be
satisfied. These will be the errors!

Let φ be a constraint and D a database.

Definition (Errors of a constraint)
A tuple s ∈ D is an error for φ
▸ if there exists a set S = {s1, . . . , sk} of tuples in D such that S ∪ {s} /⊧ φ while S ⊧ φ.

The set Error(φ,D) consists of all errors for φ in D.

Can be extended to tuple/attribute level granularity.
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Capturing Key Violations

Functional dependencies
Consider the constraint

φ ∶ ∀t1, t2 (cust(t1) ∧ cust(t2) ∧ t1[NI#] = t2[NI#]→ ⋀
B∈{ac,phn,

name,street,city,zip}

t1[B] = t2[B])

stating that NI# is a key: there is a unique record for each distinct NI#.
Consider instance D:

NI# ac phn name street city zip
SC1234566 131 1234567 M. Smith Mayfield EDI EH4 8LE
SC1234566 020 1234567 M. Smith Portland LDN W1B 1JL

▸ D does not satisfy (or violates) the FD, i.e., D /⊧ φ.
▸ Error(φ,D) consist of both tuples.
▸ According to the definition, for the first tuple s, S is the other tuple: {s} ⊧ φ but S ∪ {s} /⊧ φ.
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Recipe I

Recipe for linking cleanliness and constraints

1. Identify what kind of dirtiness you want to capture.

2. Identify a class of constraints such that its errors correspond to what you want.
▸ E.g., key violations ⇒ functional dependency constraints.

We see some more examples next.
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Capturing Local Dependencies

Local dependencies
▸ In UK (CC = 44), Zip code determines street.
▸ You know that EDI in the UK has zip code 131.
▸ You know that MH in the US (CC = 01) has zip code 908.

Consider instance D:
CC AC phn name street city zip
44 131 1234567 Mike Mayfield NYC EH4 8LE
44 131 3456789 Rick Crichton NYC EH4 8LE
01 908 3456789 Joe Mtn Ave NYC 07974

▸ How to express these as constraints?

▸ Allow equality with constants in FD-like constraints.
▸ Called conditional functional dependencies.
RWenfei Fan et al. Conditional functional dependencies for capturing data inconsistencies. ACM TODS 2008.
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Conditional Functional Dependencies

Conditional functional dependencies
cfd1: ∀t1, t2 (cust(t1) ∧ cust(t2) ∧ t1[CC] = t2[CC] = “44”→ t1[street] = t2[street])
cfd2: ∀t1 (cust(t) ∧ t1[CC] = “44” ∧ t1[AC] = “131”→ t1[city] = “EDI”)
cfd3: ∀t1 (cust(t) ∧ t1[CC] = “01” ∧ t1[AC] = “908”→ t1[city] = “MH”)

Consider instance D:
CC AC phn name street city zip
44 131 1234567 Mike Mayfield NYC EH4 8LE
44 131 3456789 Rick Crichton NYC EH4 8LE
01 908 3456789 Joe Mtn Ave NYC 07974

▸ D does not satisfy the CFDs, i.e.,
D /⊧ {cfd1, cfd2, cfd2}.

▸ Errors in all tuples.
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Inconsistencies Involving Ordered Attributes

A typical salary situation
Records for Employees:

Name Job Years Salary
Mark Senior Programmer 15 35K
Edith Junior Programmer 7 22K
Josh Senior Programmer 11 50K
Ann Junior Programmer 6 38K

We want to ensure:
“The salary of an employee is greater than other employees who have junior job titles, or the
same job title but less experience in the company.”

▸ How to express these as constraints?

▸ Allow built-in predicates such as < in constraints.
▸ Simple form: Ordered functional dependencies
RW. Ng, Ordered functional dependencies in relational databases Information Systems, 1999.
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Ordered Functional Dependencies

Ordered functional dependencies
Assume that the domain of Job titles is ordered: “Junior Programmer” <“Senior Programmer”, then

∀s, t (emp(s) ∧ emp(t) ∧ s[Job] > t[Job]→ s[Salary] > t[Salary])
expresses that

“the salary of an employee is greater than other employees who have junior job titles”.

Similarly,
∀s, t (emp(s) ∧ emp(t) ∧ s[Job] = t[Job] ∧ s[Years] > t[Years]→ s[Salary] > t[Salary])

expresses that

“the salary for employees with the same job title is greater for those with more years in the company.”
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Inconsistencies Involving Metric Data

Discrepancies in movie durations
Integrated Movie database:

Source Title Duration
movies.aol.com Aliens 110
finnguide.fi Aliens 112
amazon.com Clockwork Orange 140

movie-vault.com A Beautiful Mind 144
walmart.com Beautiful Mind 145
tesco.com Clockwork Orange 131

We want to ensure:
“Different durations of the same movie in the database may not exceed 6 minutes.”
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Inconsistencies on Metric Data

Discrepancies in geo locations
Integrated geo location database

Source Address Latitude Longitude
google 65 N St Apt#C6, SLC 40.770896 -111.864066

geocoder 5 N St Apt#C6, SLC 40.770767 -111.863768
google 50 Cen Camp Dr, SLC 40.758951 -111.845246

geocoder 50 Cen Camp Dr, SLC 40.757599 -111.843995
google 35 S 700 E Apt#3, SLC 40.76837 -111.87064

geocoder 35 S 700 E Apt#3, SLC 40.77833 -111.870869

We want to ensure:
“The same location should be appear within a specified level of accuracy, say within a circle of
radius 0.005”

▸ How to express these as constraints?
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Metric Functional Dependencies

▸ Allow built-in distance predicates such as
▸ dist1(x, y) = ∣x − y∣
▸ dist2((x1, x2), (y1, y2)) =

√
(x1 − y1)2 + (x2 − y2)2

in constraints.
▸ Simple form: Metric functional dependencies
RN. Koudas, A. Saha, D. Srivastava, S. Venkatasubramanian, Metric Functional Dependencies, ICDE, 2009.

Metric functional dependencies
Consider constraints:

∀s, t (Movie(s) ∧Movie(t) ∧ s[Title] = t[Title]→ dist1(s[Duration], t[Duration]) ⩽ 6)

for the Movie database, and

∀s, t (Loc(s) ∧ Loc(t) ∧ s[Addr] = t[Addr] → dist2((s[Lat], s[Long]), (t[Lat], t[Long])) ⩽ 0.005)

for the Location database.
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Record Matching

Record matching/object identification
▸ To identify tuples from one or more relations that refer to the same real-world object.
▸ Common problem in data integration, payment card fraud detection, ...

Credit card fraud
▸ Records for Mark Smith and M. Smith should match.

Records for card holders:
FN LN address tel DoB gender

Mark Smith 10 Oak St, EDI, EH8 9LE 3256777 10/12/97 M

Transaction records:
FN LN post phn when where amount
M. Smith 10 Oak St, EDI, EH8 9LE null 1pm/7/7/09 EDI $3,500
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

Max Smith PO Box 25, EDI 3256777 2pm/7/7/09 NYC $6,300

▸ How to express these as constraints?
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Matching Dependencies

▸ Allow similarity-based comparisons in constraints.
▸ Simple form: Matching dependencies
RDynamic Constraints for Record Matching, W. Fan, H. Gao, J. Li, X. Jia, and S. Ma, The VLDB Journal, 2011.

Matching dependency (MD):
“If two entities (tuples) agree on their last name and address and if their first names are similar, then
the two tuples should be equal on all other related attributes”

∀s, t(card(s) ∧ trans(t) ∧ s[LN] = t[LN] ∧ s[address] = t[post] ∧ s[FN] ≍ t[FN]→ s[X] = t[Y]),
where ≍ is a similarity operator and X and Y are compatible attributes in card and trans, respectively.
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Dependency-Like Constraints

▸ It is not a coincidence that constraints so far are two-tuple constraints of the form
∀s, t (R(s) ∧ S(s) ∧ LHS→ RHS)

with LHS and RHS conjunctions of atomic predicates.

▸ They are easy to interpret, efficient to reason about, and allow for fast error detection and other
computational task (as we see later)

▸ Quite popular type of constraints in the data quality context.
▸ Can capture common types of errors.
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Denial Constraints

▸ Another popular formalism are denial constraints:
∀s, t¬(R(s) ∧ S(t) ∧ COND)

where COND is again a conjunction of atomic predicates.

▸ More expressive than dependencies

▸ Still manageable in terms of reasoning, efficiency,...

Example
▸ Domain constraint: ∀s¬(R(s) ∧ s[A] ≠ “yes” ∧ s[A] ≠ “no”)
▸ “Two people living the same state should have correct tax rates depending on their income”:

∀s, t¬(R(s) ∧ R(t) ∧ s[AC] = t[AC] ∧ s[SAL] < t[SAL] ∧ s[TR] > t[TR])

Declarative Approach EDBT–INTENDED – Bordeaux 30 / 129



More Dependency-Like Constraints for Data Quality

▸ Differential dependencies
▸ Sequential dependencies
▸ Glitch dependencies
▸ Temporal dependencies
▸ Similarity/comparable dependencies
▸ Editing rules
▸ Currency dependencies
▸ Inclusion dependencies
▸ Conditional inclusion dependencies
▸ Conditional denial constraints
▸ Association rules
▸ ....

+
▸ Approximate/relaxed versions thereof

+
▸ Graph versions for data quality in (knowledge)

graphs...

▸ +
▸ Dependencies on time series
▸ +
▸ ....
▸ More expressive languages are used for entity

resolution, e.g., Datalog in Dedupalog (and
more recent declaritive approaches to ER),

▸ FO and Markov Logic in Holoclean...
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So Far...

▸ We have seen various examples of constraints.
▸ Key message: keep them simple
▸ Constraints allow to focus on semantic properties of data
▸ No low-level code is needed to express dirtiness.

▸ Hope I convinced you that constraints are an elegant way of describing when data is clean or
dirty!

Next...
▸ Let us fix some class of constraints.
▸ Let Σ be a set of such constraints.
▸ So, what do to with these?
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Data Cleaning Pipeline: Revisited

▸ A high-level overview of the overall constraint-based data quality pipeline:

Σ
D

St
at

ic
an

al
ys

is

Constraint discovery Error detection Data repairing

▸ We discuss each of these aspects next.
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Static Analysis

Σ D
Static analysis

Challenge:

When constraints are given, check constraints and reduce them in size without losing information.
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Static Analysis: Consistency of Constraints

When constraints Σ are present one may want to:
▸ Check whether they are consistent, i.e., whether there exists a database D such that D ⊧ φ.

▸ This is a sanity check to ensure that the constraints are not dirty themselves.

Inconsistent constraints
Consider

φ1 ∶∀s (R(s) ∧ s[A] = a→ s[B] = b1)

φ2 ∶∀s (R(s) ∧ s[A] = a→ s[B] = b2),
with b1 ≠ b2. No database can satisfy both constraints.

▸ When Σ is inconsistent, find a maximal consistent set of constraints Σ′ ⊆ Σ.
▸ Σ ∖Σ′ are potentially “wrong” constraints.
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Static Analysis: Redundant Constraints

When constraints Σ are present one may want to:
▸ Check whether no constraint in Σ is redundant, i.e., whether there exists a φ ∈ Σ such that for all
D,

D ⊧ (Σ ∖ φ)⇒ D ⊧ φ.

▸ The smaller the initial set of constraints, the more efficient things will be later on.

Redundant constraints
Consider

φ1 ∶∀s, t (R(s) ∧ R(t) ∧ s[A] = t[A]→ s[B] = t[B])
φ2 ∶∀s, t (R(s) ∧ R(t) ∧ s[B] = t[B]→ s[C] = t[C])
φ3 ∶∀s, t (R(s) ∧ R(t) ∧ s[A] = t[A]→ s[C] = t[C]).

Any database D ⊧ {φ1, φ2} will also satisfy φ3. So, φ3 is implied and can be regarded as redundant.

▸ When Σ is redundant, find a minimal cover of the set of constraints.
▸ That is, a minimal set of constraints equivalent to the original one.
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Static Analysis

When the constraints are too expressive, consistency and redundancy checking are undecidable.

▸ Computational complexity of these problems have been studied for various small classes of
constraints (ptime, np, ...).

▸ Of particular interest are axiomatizations of inference, as this gives a procedural way for:
▸ checking redundancy; and
▸ computing minimal covers, i.e., a minimal set of equivalent constraints.

These are important preprocessing steps but we do not detail these further in this talk. SeeRFoundations
of Data Quality Management, by Wenfei Fan, G., Morgan & Claypool, 2012 for more details.

▸RAndreas’s lecture: chase-like procedure can be used for some of these tasks as well.
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Error Detection

Σ D

Error detection

Challenge:

Given the constraints, find the errors in the data.
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Error Detection

Recall:

Definition (Errors of a constraint)
Let φ be a constraint and D a database.
▸ A tuple s ∈ D is an error for φ, if there exists a set S = {s1, . . . , sk} of tuples in D such that

S ∪ {s} /⊧ φ while S ⊧ φ.
▸ The set Error(φ,D) consists of all errors for φ in D.

Error detection problem
Given a database D and a set Σ of constraints, compute the errors, i.e., the set of tuples

Error(Σ,D) = ⋃
φ∈Σ

Error(φ,D).

▸ For “standard” constraints (keys, foreign keys), supported by DBMS, simply execute:
DBCC CHECKCONSTRAINTS WITH ALL_CONSTRAINTS

▸ For “non-standard” constraints, it is a matter of implementing them as queries in SQL.
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Error Detection by Evaluating Queries

SQL

Σ

D

Positive side-effects of translation of constraints in SQL:

▸ Existing query optimization techniques can be used to efficiently detect errors of constraints.
▸ Can also be deployed in incremental (dynamic) and distributed setting.

Largely taken for granted that this can all be done efficiently.

▸ Unexplored how efficient error detection actually is for specific classes of constraints...
▸ E.g., Find FD errors in a distributed setting....
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Constraint Discovery

Σ D

Constraint discovery

A bigger problem:

A main issue is how to get the constraints.
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Where Do the Constraints Come From?

▸ They are either manually designed, by domain experts;

▸ Automatically discovered, based on the data; or

▸ Learned from errors, often in an interactive way.

▸ Finding constraints is a part of data profiling, a more general process of obtaining information
from the data.
RData Profiling, SIGMOD 2017 Tutorial by Ziawasch Abedjan, Lukasz Golab and Felix Naumann.

▸ It is the first step in the constraint-based approach to data quality (once it is decided what kind
of constraints will be considered).
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Discovery Methods

Two main approaches:

1. Data-driven discovery methods: Find constraints by using only the data.

ΣD

2. Explanation-based methods: Find constraints using the data and available errors.
⇒ Constraints should explain the errors.

Σ
D
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Data-driven Discovery Methods

Automatic methods are typically designed for a specific class of constraints.
Let C be a class of constraints, e.g., functional dependencies, denial constraints, inclusion dependencies,
matching dependencies, ...

Constraint discovery problem
Given a database D and a class C of constraints, find all constraints φ in C such that D ⊧ φ holds.

Does this make sense?
▸ You will discover constraints based on dirty data??
▸ You will use these constraints to find errors in the data, but D ⊧ φ implies that there are no

errors??
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Discovering Constraints from Dirty Data

How to reduce the impact of dirty data in the discovery process?

Common approaches:
1. Sampling: Run the discovery process on different samples from the data, only retain constraints

discovered in each sample (intersection).

D

S1

S2

S3

Σ1

Σ2

Σ3

Σ1 ∩Σ2 ∩Σ3

2. Approximate: Find constraints that are “almost” true. For example, find all φ in the class C of
constraints such that

(D ∖ E) ⊧ φ

for a small set E of tuples, e.g., ∣E ∣ < ϵ∣D∣ for some parameter ϵ > 0.
3. Hybrid: Combinations of sampling and approximate methods.
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Data-Driven Constraint Discovery

▸ There are over 60 methods each discovering some specific kind of constraints.
▸ A renewed interest in recent years, with papers on this topic in all major database and data mining

conferences.

We briefly discuss:
▸ a schema-driven functional dependency discovery algorithm (TANE)
▸ a data-driven denial constraints discovery algorithm (FASTDC)

▸ Most other methods use similar techniques.
▸ Overlap with data mining techniques for finding patterns in data.
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Functional Dependency Discovery

A classical problem: A lot of different method exist for FD discovery (earliest algorithms 1999, latest
2019).

For convenience, we denote functional dependencies
φ = ∀s, t (R(s) ∧ R(t) ∧ s[X] = t[X]→ s[Y] = t[Y])

by X→ Y and write D ⊧ X→ Y for D ⊧ φ.

FD discovery problem
Given a database D, find all FDs X→ Y such that D ⊧ X→ Y.

It suffices to consider FDs of the form X→ A, for a single right-hand-side (RHS) attribute A .
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Naive FD Discovery Algorithm

Naive Algorithm
1 Function: find_FDs (D)
2 return All valid FDs φ such that D ⊧ φ.

3 for each attribute A in R do
4 for each X ⊆ R ∖ {A} do
5 for each pair (t1, t2) ∈ D do
6 if t1[X] = t2[X] & t1[A] ≠ t2[A] then
7 break

8 return X→ A

Complexity: For each of the ∣R∣
possibilities for RHS:
▸ check 2∣R∣−1 combinations for left-

hand-sides
▸ scan the db ∣D∣2/2 times for each

combination.

Don’t use this algorithm! Very inefficient!
▸ Avoid discovering redundant FDs.
▸ A better way of traversing the search space is needed.
▸ Improve efficiency of checking validity of FDs.
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TANE: Discovering FDs

We look in a bit more detail to the TANE algorithm.
RTANE: An Efficient Algorithm for Discovering Functional and Approximate Dependencies. The Computer Journal 42
(2), 1999, by Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen

Idea behind the approach:
1. Reduce column combinations through pruning.

▸ Modelling of search space as lattice; and
▸ Reasoning over FDs.

2. Reduce tuple sets through partitioning.
▸ Partition data according to attribute values; and
▸ Level-wise increase of size of attribute set.
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TANE: Search Space Modelling

▸ Model search space as power set lattice: brings some structure to the search space.
▸ Traverse the lattice in a bottom-up way: use information from levels below.

▸ A node X in the lattice corresponds to FDs: X ∖A→ A for A ∈ X.

Suppose R is a relation with attributes A,B,C,D,E.

Existing Solutions

• Breadth-first traversal
• Tane [Huhtala et al., 1999]
• FUN [Novelli et al., 2001]
• FDMine [Yao et al., 2002]
• DepMiner [Lopez et al., 2000]

• Depth-first traversal
• FastFD [Wyss et al., 2001]

• MISC
• FDEP [Flach et al.,1999]
• DFD [Abedjan et al. 2015]
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TANE: Avoid Checking for Non-minimal FDs

Definition (Minimal FDs)
A minimal FD X→ A is one such that D ⊧ X→ A but D /⊧ Y→ A for all strict subsets Y of X

Non-minimal FD
Let X = {ABC}.
▸ Naive: Need to test three dependencies:

AB→ C,AC→ B, and BC→ A.

▸ Optimization: Suppose we know from before that D ⊧ A→ B.
▸ We should not be testing D ⊧ AC→ B because it is not minimal.

▸ TANE maintains a set of candidate RHS attributes during lattice traversal, to avoid checking non-
minimal FDs.
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TANE: Avoid Checking for Non-minimal FDs

Candidate RHS
▸ Initially, all attributes are candidate RHS (marked in green).

▸ FDs are verified on D: green ones are valid FDs.
▸ Valid RHS attributes are removed from candidate set.
▸ Candidate set next level: intersection of candidate sets below.
▸ Only candidate attributes tested for RHS.

ABC

AB AC BC

A B C

ABCDE ABCDE ABCDE
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TANE: Additional Pruning

▸ TANE uses more advanced reasoning on FDs ⇒ further reduction of candidate RHS sets.
▸ When a node X has no candidate RHS, then all supersets Y of X can be pruned.

▸ No Y ∖ {A}→ A can be minimal and Y can be ignored.

Existing Solutions

• Breadth-first traversal
• Tane [Huhtala et al., 1999]
• FUN [Novelli et al., 2001]
• FDMine [Yao et al., 2002]
• DepMiner [Lopez et al., 2000]

• Depth-first traversal
• FastFD [Wyss et al., 2001]

• MISC
• FDEP [Flach et al.,1999]
• DFD [Abedjan et al. 2015]
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TANE: Algorithm Overview

TANE
1 Function: tane(D)
2 return All valid minimal FDs φ such that D ⊧ φ.

3 level0 ∶= ∅
4 candRHS ∶= all attributes in R
5 level1 ∶= {A ∣ A ∈ R}
6 ℓ = 1
7 while levelℓ ≠ ∅ do
8 Verify_Dependencies&UpdateCandRHS(levelℓ,candRHS)
9 prune(levelℓ,candRHS)

10 levelℓ+1:=generate_next_level(levelℓ)
11 ℓ ∶= ℓ + 1

▸ Dependency checking is optimised in TANE as well, based on a partitioning approach.
▸ This partitioning approach is used in many other discovery methods as well.

Constraint Discovery FD discovery EDBT–INTENDED – Bordeaux 59 / 129



TANE: Dependency Checking

Let X be a set of attributes.

Definition (X-equivalence)
Tuples s and t in D are X-equivalent w.r.t. attribute set X if t[A] = s[A] for all A ∈ X.

Definition (X-Partition)
Attribute set X partitions D into equivalence classes:

[t]X = {s ∈ D ∣ ∀A ∈ X, s[A] = t[A]}.
Clearly,

D = [t1]X ∪̇ [t2]X ∪̇⋯∪̇ [tk]X.
for some tuples t1, . . . , tk in D. We denote the set of parts by πX.
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TANE: Partition Example

Partition
tuple id A B C D

1 a1 b1 c1 d1
2 a1 b2 c2 d3
3 a2 b2 c1 d4
4 a2 b2 c1 d1
5 a2 b3 c3 d5
6 a3 b3 c1 d6
7 a3 b4 c4 d1
8 a3 b4 c5 d7

[1]A = [2]A = {1,2}
πA = {{1,2},{3,4,5},{6,7,8}}
πBC = {{1},{2},{3,4},{5},{6},{7},{8}}
πD = {{1,4,7},{2},{3},{5},{6},{8}}
⋮
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TANE: Partition Refinement

Definition (Refining)
A partition π refines partition π′ if every equivalence class in π is a subset of some equivalence class in
π′.
Let X be a set of attributes.
▸ πXA always refines πA.
▸ If πX also refines πXA, πX = πXA and D ⊧ X→ A.

▸ Validity checking of FDs can use the partitions.
▸ Furthermore, we simply need the sizes of the partitions.

We have that D ⊧ X→ A if and only if ∣πX∣ = ∣πXA∣.
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TANE: Checking FDs

Testing validity of FDs:
We have that D ⊧ X→ A if and only if ∣πX∣ = ∣πXA∣.

Example
tuple id A B

1 a1 b1
2 a1 b1
3 a2 b1
4 a2 b1
5 a2 b1
6 a3 b2
7 a3 b2
8 a3 b2

πA = {{1,2},{3,4,5},{6,7,8},
πB = {{1,2,3,4,5},{6,7,8}}
πAB = {{1,2},{3,4,5},{6,7,8}}

Hence, ∣πAB∣ = ∣πA∣ and A→ B. Note, ∣πAB∣ > ∣πB∣ and B→ A does not hold.

▸ These partitions can be generated efficiently during lattice traversal.
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Functional Dependency Discovery

▸ Schema-driven: Usually sensitive to the size of the schema ⇒ Good for long thin tables!
▸ TANERHuhtala et al, 1999
▸ FUNRNovelli et al., 2001
▸ FDMineRYao et al., 2002
▸ DepMinerRLopez et al., 2000

▸ Instance-driven: Usually sensitive to the size of the data ⇒ Good for fat short tables!
▸ FASTFDRWyss et al, DaWaK, 2001

▸ Hybrid: Try to get the best of both worlds.
▸ FDEPRFlach et al.,1999
▸ DFDRAbedjan et al. 2015
▸ PYRORKruse et al. 2018
▸ HyFDRPapenbrock et al. 2016

▸ Other aspects:
▸ Distributed FD DiscoveryRSaxena et al.,VLDB 2019
▸ ...
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Experimental Comparison

256MB 4GB 8GB 16GB 32GB 100GB

A
d
u
lt

Tane ML ML 74
Fun ML ML ML 112
Fd Mine ML ML ML ML ML 532
Dfd ML 6
Dep-Miner 6103
FastFDs 6097
Fdep 861

L
et
te
r

Tane ML ML ML ML 274
Fun ML ML ML ML 534
Fd Mine ML ML ML ML ML 7205
Dfd ML 6
Dep-Miner 1090
FastFDs 1015
Fdep 293

H
o
rs
e

Tane ML ML ML ML 491
Fun ML ML ML ML TL TL
Fd Mine ML ML ML ML ML ML
Dfd TL TL TL TL TL TL
Dep-Miner TL TL TL TL TL TL
FastFDs 411
Fdep 8

TL: time limit of 4 hours exceeded
ML: memory limit exceeded

Table 2: Memory experiment (runtimes in seconds)

to pre-build all PLIs for the next level. To prevent memory
overflows, PLIs could be written to disk when memory is
exhausted. In this way, Tane could turn memory limits
into longer execution times.

Fun: In contrast to Tane, Fun needs to keep all cardinality
counts from already finished lattice levels in memory, be-
cause the recursive cardinality look-ups might require them
later on. So in the worst case, namely if most PLIs are ac-
tually needed, the memory consumption for Fun becomes a
bit higher than the memory consumption of Tane.

Fd Mine: Fd Mine would have a similar memory con-
sumption than Tane if it would not produce so many non-
minimal results. These huge result sets eat up all memory.

DFD:Dfd has a better memory performance than the other
lattice traversal algorithms, because it prunes much more
aggressively and, hence, creates much fewer PLIs. It also
monitors its memory consumption to free least recently used
PLIs from its internal PLI store. This basically trades the
memory limit on the horse dataset for a time limit.

Dep-Miner, FastFDs and Fdep: The three algorithms
Dep-Miner, FastFDs and Fdep have much lower memory
requirements than lattice-based algorithms, because they
operate directly on the data and store intermediate results
in memory e�cient tree structures. Fdep’s FD-tree is espe-
cially memory e�cient, because its size directly scales with
the size of the result set.

4.6 Extrapolation of experimental results
Our experiments have shown that all algorithms have spe-

cific advantages and disadvantages: Lattice traversal algo-
rithms scale well with the number of rows, but their perfor-
mance decreases for a large number of columns; di↵erence-
and agree-set algorithms as well as dependency induction
algorithms scale well with an increasing number of columns,
but have performance issues with many rows. For these in-
sights, each experiment evaluated the algorithms on only
a small cross section of parameters. In the following, we

extrapolate previous measurements in order to predict the
fastest algorithm for any input dataset.

For this extrapolation, we assume that main memory is
arbitrary large. This gives us the best performance for
each algorithm. If the memory is not su�cient, the algo-
rithms require memory management techniques that either
write intermediate data structures (partially) to disk or op-
timistically delete and later rebuild them if necessary. These
techniques would shift the performance to the disadvantage
of lattice based algorithm, because they hit memory limits
much earlier than the other algorithms. We do not ana-
lyze this dimension here, because no FD algorithm besides
Dfd has actually tried memory management techniques and
extending the algorithms is not in the focus of this paper.

For any combination of column and row counts, we want
to give a prediction for the fastest algorithm. From our ex-
periments, we already know the fastest algorithms for some
of these combinations, e.g., the bold runtimes in Table 1.
The scalability experiments have further shown the best al-
gorithms for longer ranges of row or column numbers. Fig-
ure 7 places all these observations into a matrix. There are
points for Tane, Fun, Dfd, and Fdep. All other algorithms
never performed best. We already see that all points from
Fun lie in the very lower left corner of the chart and are
superimposed by points from Fdep. Since Fun performs
only sporadically best and only for such a small parameter
setting, we ignore these points in our extrapolation.

DFD           Tane             FDep 

Figure 7: Fastest algorithm with respect to column
and row counts when memory is arbitrary large.

With the measurement points of the best algorithms set,
we now select those points for which Dfd and Tane per-
form equally well; then we calculate a regression through
these points. Afterwards, we do the same for Tane and
Fdep. These two regression lines border areas in which one
algorithm is expected to perform best.

Note that the border line between Tane and Fdep is cal-
culated with only small datasets. It is therefore less precise
than the line between Dfd and Tane. We tried to add
some more measurements at 40 and 60 columns using the
plista and uniprot datasets, but Tane always exceeded our
memory limit of 100 GB (it actually exceeded 128 GB). The
exact border lines may vary slightly anyways depending on
the distribution of FDs in the input dataset, because this
also influences the algorithms’ performance as shown for the
fd-reduced dataset in Section 4.4.

1092

▸RFunctional Dependency Discovery: An Experimental Evaluation of Seven Algorithms, Paperbrock et al, VLDB 2016
▸ https://hpi.de/naumann/projects/repeatability/data-profiling/fds.html
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TANE: Approximate FDs

TANE can also be used to discover approximate functional dependencies

An approximate FD X→ A holds on D if
err(X→ A,D) ≤ ε,

where
err(X→ A,D) = min{∣S∣ ∣ S ⊆ D,D ∖ S ⊧ X→ A}

∣D∣
,

i.e., minimum number of tuples to be removed from D such that X→ A holds.

▸ Using the partitions, err(X→ A,D) can be easily computed.
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Discovering Denial Constraints

We next consider the FASTDC Algorithm finds all minimal valid DCs.
RDiscovering Denial Constraints, VLDB 2013, by Xu Chu, Ihab F. Ilyas and Paolo Papotti.

By contrast to TANE, this is an instance-based algorithm.

1. Build evidence sets, based on the data.
2. Return minimal covers of these sets.

Denial constraint

¬∃s, t (R(s) ∧ R(t) ∧ s[AC] = t[AC] ∧ s[SAL] < t[SAL] ∧ s[TR] > t[TR])
“Two people living in the same state should have correct tax rates depending on their income”

We here only consider denial constraints involving two tuples.
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FASTDC: Predicate Space

In a denial constraint, we may have different kinds of predicates:
s[A] = t[A] s[A] ≠ t[A] s[A] < t[A] ⋯

The predicate space consists of all (valid/invalid) instantiations of these predicates.

Predicate space

tuple id A B C
1 a1 a1 50
2 a2 a1 40
3 a3 a1 40

Space of predicates P: for i, j ∈ {1,2,3}
P1 ∶ ti.A = tj.A P2 = ti.A ≠ tj.A
P3 ∶ ti.B = tj.B P4 = ti.B ≠ tj.B
P11 ∶ ti.A = ti.B P12 = ti.A ≠ ti.B
P21 ∶ ti.A = tj.B P22 = ti.A ≠ tj.B
P5 ∶ ti.C = tj.C P6 = ti.C ≠ tj.C
P6 ∶ ti.C > tj.C P8 = ti.C ≥ tj.C
P9 ∶ ti.C < ti.C P10 = ti.A ≤ ti.B

▸ Any combination of these predicates may be a valid DC (exponentially many!)
▸ Only valid DCs with a minimal number of predicates are discovered.
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FASTDC: Evidence Sets

Based on the database instance D and predicate space P, the evidence sets are computed:
▸ For each pair of tuples, list all valid predicates.

Evidence sets

tuple id A B C
1 a1 a1 50
2 a2 a1 40
3 a3 a1 40

Evidence sets E:
(2,3), (3,2) = {P2,P3,P5,P8,P10,P12,P14}
(2,1), (3,1) = {P2,P3,P6,P8,P9,P12,P14}
(1,2), (1,3) = {P2,P3,P6,P7,P10,P11,P13}

▸ A minimal cover of an evidence set is a minimal set of predicates intersecting all evidence sets.
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Evidence Sets ↔ Minimal DCs

D ⊧ ¬(Pi ∧ Pj ∧ Pk)
⇕

For every pair of tuples in D, Pi, Pj and Pk cannot be all true
⇕

For every pair of tuples in D, at least one of Pi, Pj and Pk is false
⇕

For every pair of tuples in D, at least one of ¬Pi, ¬Pj and ¬Pk is true
⇕

¬Pi, ¬Pj and ¬Pk covers the evidence sets

Theorem
¬(P1∧⋯∧Pk) is a minimal valid DC if and only if {¬P1, . . . ,¬Pk} is a minimal set cover for all evidence
sets.
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FASTDC

Minimal Denial constraints

tuple id A B C
1 a1 a1 50
2 a2 a1 40
3 a3 a1 40

Evidence sets E:
(2,3), (3,2) = {P2,P3,P5,P8,P10,P12,P14}
(2,1), (3,1) = {P2,P3,P6,P8,P9,P12,P14}
(1,2), (1,3) = {P2,P3,P6,P7,P10,P11,P13}

⇒ P2 covers the set of true predicates minimally.
Hence, ¬(¬P2) = P2 is a valid minimal DC.
⇒ P10,P14 cover the set of true predicates minimally.
Hence, ¬(¬P10 ∧ ¬P14) is a valid minimal DC

1 Function: FastDC (D)
2 return Set Σ of all valid denial constraints on D.

3 P← build the predicate space for D
4 E ← build the evidence sets based on P and D
5 for minimal cover C of E do
6 Σ ∶= Σ ∪ {¬C̄}
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FASTDC

The actual FASTDC algorithm
RDiscovering Denial Constraints, VLDB 2013, by Xu Chu, Ihab F. Ilyas and Paolo Papotti.

has:
▸ More advanced pruning techniques, based on axiomatization of implication of DCs;
▸ Different methods for finding all minimal covers; and
▸ Extended to approximate DCs.

Extended with sampling techniques and more efficient evaluation strategies in the HYDRA algorithm:

REfficient Denial Constraint Discovery with Hydra, VLDB 2017, Tobias Bleifuß, Sebastian Kruse and Felix Naumann
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Other Discovery Methods (very partial list)

CFDsRDiscovering Conditional Functional Dependencies, W. Fan, G., L. Jianzhong, M. Xiong, TKDE, 2010.

CFDsRDiscovering Data Quality Rules, F. Chiang, R. Miller,VLDB, 2008.

CFDsREstimating the confidence of conditional functional dependencies, G. Cormode, L. Golab, F. Korn, A. McGregor, D.
Srivastava, X. Zhang, SIGMOD 2009.

DDsRDifferential dependencies: Reasoning and discovery, S. Song, L. Chen, TODS, 2011

INDsRUnary and n-ary inclusion dependency discovery in relational databases. F. De Marchi, S. Lopes, and J.-M. Petit., JIIS
2009.

INDSRDivide & conquer-based inclusion dependency discovery. T. Papenbrock, S. Kruse, J.-A. Quianè-Ruiz, and F. Naumann.
VLDB, 2015.

CINDsRDiscovering conditional inclusion dependencies, J. Bauckmann Z. Abedjan, U. Leser, H. Müller, F. Naumann, CIKM
2012.

eRsRDiscovering editing rules for data cleaning. T. Diallo, J.-M. Petit, and S. Servigne. AQB, 2012.

MDsRDiscovering matching dependencies, S. Song and L. Chen. CIKM, 2009.

ODsREfficient distributed discovery of bidirectional order dependencies S Schmidl, T Papenbrock. The VLDB Journal, 2022.
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Explanation-Based Discovery

So far, discovery methods only used the database D.

In practice, we may have additional information:

▸ errors,
▸ corrections, or
▸ user feedback.

Σ
D

▸ Explanation-based methods attempt to find constraints that “explain” these errors and corrections.
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Approaches

▸ FALCON
RInteractive and deterministic data cleaning: A tossed stone raises a thousand ripples. SIGMOD 2016, J. He et
al.

▸ It finds constant CFDs based on a single modification.
▸ relies on a “user oracle” to (in)validate the proposed rules.

▸ UGUIDE
RUGuide: User-guided discovery of FD-detectable errors. SIGMOD 2017, L. Thirumuruganathan et al.

▸ Starting from an initial set of FDs, find FD that explain errors by means of questions to users.
▸ Cost-function: Explain as many errors as possible, minimize false positives.

▸ Xplode
RExplaining Repaired Data with CFDs VLDB 2018, J. Rammelaere and G.

▸ We discuss this in a bit more detail.
▸ Crowd-based methods... (not covered)
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XPlode: Discover CFDs that Explain Repairs

Given: Dirty database with errors and corrections.

▸ We regard (corrections) as modifications changing a dirty instance to a (partially) clean one:
Ddirty ↦ modifications↦ Drep

TID CC AC PN NM STR CT ZIP

t1 01 908 1111111 Mike Tree Ave. MH←LA 07974
t2 01 908 1111111 Rick Tree Ave. MH←NYC 07974
t3 01 212 2222222 Joe 5th Ave NYC 01202
t4 01 908 2222222 Jim Elm Str. MH 07974
t5 44 131 3333333 Ben High St. EDI EH4 1DT
t6 44 131 4444444 Ian High St. EDI EH4 1DT
t7 44 908 4444444 Ian Port PI MH W1B 1JH
t8 01←44 131 2222222 Sean 3rd Str. UN 01202
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Xplode: Modifications and CFDs

Definition (Explanation)
Let M be a set of modifications. Then a CFD φ of the form

∀s, t(R(s) ∧ R(t) ∧⋀
i∈L

t[A] = s[A] = ai → s[B] = t[B](= b)

is an M-explanation if:
▸ The error of the CFD decreases after applying the modifications.
⇒ the partial repair satisfies the CFD more than the original database.

▸ At least one tuple that is modified should be an error of the CFD.
⇒ CFD should not explain irrelevant modifications.

▸ When restricted to the modified tuples, the CFD should be satisfied.
⇒ This ensures that future modifications keep the CFD satisfied.

It is a local M-explanation if it is an M′-explanation for any M′ ⊆M.
▸ Should be independent of the order of the modifications.
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Xplode: Example

TID CC AC PN NM STR CT ZIP

t1 01 908 1111111 Mike Tree Ave. LA 07974
t2 01 908 1111111 Rick Tree Ave. NYC 07974
t3 01 212 2222222 Joe 5th Ave NYC 01202
t4 01 908 2222222 Jim Elm Str. MH 07974
t5 44 131 3333333 Ben High St. EDI EH4 1DT
t6 44 131 4444444 Ian High St. EDI EH4 1DT
t7 44 908 4444444 Ian Port PI MH W1B 1JH
t8 44 131 2222222 Sean 3rd Str. UN 01202
▸ Candidate explanation: FD

φ = ∀s, t(R(s) ∧ R(t) ∧ s[CC] = t[CC] ∧ s[AC] = t[AC]→ s[ZIP] = t[ZIP])
has an error of 1/8 (tuple t8 needs to be removed for it be satisfied).

▸ After the green modification in t8, its error becomes 0 (it is satisfied)
▸ These next two green modifications in tuples t1 and t2, do not reduce error further and φ remains

satisfied.
▸ It is not local explanation, however.
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Xplode: Example

TID CC AC PN NM STR CT ZIP

t1 01 908 1111111 Mike Tree Ave. MH 07974
t2 01 908 1111111 Rick Tree Ave. MH 07974
t3 01 212 2222222 Joe 5th Ave NYC 01202
t4 01 908 2222222 Jim Elm Str. MH 07974
t5 44 131 3333333 Ben High St. EDI EH4 1DT
t6 44 131 4444444 Ian High St. EDI EH4 1DT
t7 44 908 4444444 Ian Port PI MH W1B 1JH
t8 01 131 2222222 Sean 3rd Str. UN 01202
▸ Candidate explanation: FD

φ = ∀s, t(R(s) ∧ R(t) ∧ s[CC] = t[CC] ∧ s[AC] = t[AC]→ s[ZIP] = t[ZIP])
has an error of 1/8 (tuple t8 needs to be removed for it be satisfied).

▸ After the green modification in t8, its error becomes 0 (it is satisfied)
▸ These next two green modifications in tuples t1 and t2, do not reduce error further and φ remains
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▸ It is not local explanation, however.
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φ = ∀s, t(R(s) ∧ R(t) ∧ s[CC] = t[CC] ∧ s[AC] = t[AC]→ s[ZIP] = t[ZIP]
has an error of 1/8 (tuple t8 needs to be removed for it be satisfied).

▸ When given first modifications to t1 and t2, the error remains 1/8.
▸ Also note t1 and t2 do not violate φ.
▸ So, indeed not a good explanation.
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Xplode: Example

Example
TID CC AC PN NM STR CT ZIP

t1 01 908 1111111 Mike Tree Ave. LA 07974
t2 01 908 1111111 Rick Tree Ave. NYC 07974
t3 01 212 2222222 Joe 5th Ave NYC 01202
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t5 44 131 3333333 Ben High St. EDI EH4 1DT
t6 44 131 4444444 Ian High St. EDI EH4 1DT
t7 44 908 4444444 Ian Port PI MH W1B 1JH
t8 44 131 2222222 Sean 3rd Str. UN 01202
▸ Candidate explanation: CFD

∀s, t(R(s) ∧ R(t) ∧ s[CC] = t[CC] ∧ s[AC] = t[AC]→ s[CT] = t[CT]
has an error of 2/8 (tuple t8 and t1 or t2 need to be removed for it be satisfied).

▸ Applying any single modification reduces the error to 1/8.
▸ Applying two modifications reduces it to 0.
▸ Each modified tuple is involved in a violation.
▸ This is a local explanation of the modifications.
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Xplode: Scoring Function

To further distinguish between local M-explanations:

Definition (Score)

score(φ,M) ∶=max{∣M′∣ ∣M′ ⊆M and φ locally explains M′}.

▸ If φ has a score close to ∣M∣, then almost all modifications in M are both globally and locally
explained.

▸ We are thus interested in global explanations with a high score.

Problem statement
Given instances Ddirty and Drep and modifications M, find an explanation (CFD) such that score(φ,M)
is maximal.
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Xplode: Algorithm

▸ Xplode visits a lattice, such as in TANE, ensuring that the highest score CFD is found without
exploring the entire lattice.

▸ Pruning strategies are in place, based on an upper bounding technique.
▸ “on-demand”, score increases in each step.

1 Function: Xplode (Ddirty,Drep,M, score)
2 return best local M-explanation.

3 Φ← (∅,∅), score = +∞
4 φmax = nil, max = 0
5 while Φ is not empty do
6 (X, tp) = Pop(Φ)
7 Find best local M-explanation ∀s, t (R(s) ∧ R(t) ∧⋀Ai∈X∖A s[Ai] = t[Ai] = tp[Ai]→ s[A] = t[A] = tp[A])

based on (X, tp)
8 if score(φ) > max then
9 φmax = φ, max = score(φ)

10 Delete from Φ all elements with lower score
11 Test whether any children of (X, tp) is a better explanation. If so, add these to Φ.
12 return φmax.
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Call for Research

Use machine learning approaches for discovering explanations:

++ + +
+
+++

- - --
-

--Feature extraction

constraints
+ examples (correct)
- examples (errors)

Seems a natural fit. Promising research direction!

RZhihan Guo and Theodoros Rekatsinas, Unsupervised Functional Dependency Discovery for Data Preparation, ICLR,
Learning from Limited Data Workshop 2019
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Recipe II

When you identified the right constraints for your data quality problem
▸ Invest in a discovery method.
▸ It allows to assist domain experts in formulating constraints that are relevant for your data.
▸ Rich body of techniques available...

Next ...
▸ How to use constraints to repair the data.
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Data Repairing

Σ D

Data repairing

Repairing:

How to fix the data??
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Data Repairing

Definition
A repair of a database Ddirty relative to a set Σ of constraints is a database Drep such that
▸ Drep satisfies all the constraints in Σ; and
▸ Drep is close to Ddirty.

▸ In practice, repairing methods always keep the “human in the loop”.

▸ A repair model indicates what kind of operations are allowed to modify the dirty database into a
clean one, e.g., by means of tuple deletions, insertions, value modifications.

▸ A cost function is used to ensure that a repair minimally differ from original database, e.g., edit
distance,...

▸RRecall Jef’s ands Benny’s lectures.
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An Example

Example
Σ: Key constraint StdId→ StdName.

Dirty database:

StdId StdName
123 John
123 Steve
456 Anna
789 Geoff

Repair model: tuple deletion
Cost function: number of deleted tuples.
Result: Two possible repairs, if only tuple deletions are allowed:

StdId StdName
123 John
456 Anna
789 Geoff

and
StdId StdName
123 Steve
456 Anna
789 Geoff

In general, there may be exponentially many repairs.
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Different Approaches to Data Repairing

We have seen that a repair is not unique.
When one wants to query repairs, one distinguishes between the following two approaches:

Consistent query answering
▸ Avoid selecting a repair; and
▸ at query time only return query answers that are common to all repairs.

Data repairing
▸ Select the best possible repair; and
▸ which is subsequently queried.
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Consistent Query Answering

Ddirty

Drep1

Drep2

Drep3

Q
⎛
⎝

⎞
⎠

Q
⎛
⎝

⎞
⎠

Q
⎛
⎝

⎞
⎠

∩

∩

Challenge
How to compute certain answers without computing all repairs.

RSee Jef’s lecture.
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Data Repairing and Querying

Ddirty Drep

Q
⎛
⎝

⎞
⎠

Of course, queries can be replaced by any other data analytical tasks.
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Repairing Methods

One distinguishes between:
1. chase-based repair methods.

▸ Repair is obtained by “firing” constraints until all constraints are satisfied.

2. Holistic repair methods:
▸ Repair is obtained by taking a “global” view of all errors involved.

3. Probabilistic repair methods:
▸ Use probabilistic inference to find good repair, possibly not satisfying all constraints.
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Chase-based Repair Methods

The majority of existing repair methods decide how to repair based in a local manner:
▸ Repair Error(φ,Ddirty) for each constraint φ, one at a time.

▸ Keep doing so, until (hopefully) a repair is obtained.

▸ This process is also known as the chase: one chases the constraints.

We discuss briefly one chase-based repair method: LLunatic
RG., G. Mecca, P. Papotti, D. Santoro. The LLUNATIC Data-Cleaning Framework, VLDB 2013

RG., G. Mecca, P. Papotti, D. Santoro. Cleaning data with LLUNATIC, The VLDB Journal, 2019
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How to Repair?

SSN Name Phone STR CITY #CC

222 L. Lennon 122-1874 null SF 7842554
222 L. Lennon 102-111 Fry SF 7842545
111 J. White 110-1000 Maple NY 1010101

A key constraint: SSN→ Name,Phone,STR,CITY,#CC or
φ = ∀s, t(R(s) ∧ R(t) ∧ s[SSN] = t[SSN]→⋀

A
s[A] = t[A])

▸ In the chase, changes must be made to errors of φ such that φ is satisfied.

But which changes?
▸ Is the phone number of L. Lennon 122-1874 or 102111?
▸ Is the street of L. Lennon Fry?
▸ What is his credit card number?
▸ Perhaps they are different Lennon’s? So SSN is incorrect?
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Llunatic: Collect Information

▸ collect extra information about the values in the database.
▸ each cell is extended with preference level.
▸ Preference levels related by means of a partial order.

SSN Name Phone STR CITY #CC

⟨pu,222⟩ ⟨pc1,L. Lennon⟩ ⟨p0.9,122-1874⟩ ⟨p�,null⟩ ⟨pc6,SF⟩ ⟨pc10,7842554⟩
⟨pu,222⟩ ⟨pc2,L. Lennon⟩ ⟨p0.1,102-111⟩ ⟨pc4,Fry⟩ ⟨pc7,SF⟩ ⟨pc11,7842545⟩
⟨pu,111⟩ ⟨pc3,J. White⟩ ⟨p1,110-1000⟩ ⟨pc5,Maple⟩ ⟨pc9,NY⟩ ⟨pc12,1010101⟩

Preference levels:
▸ pc1–pc12: no other information
▸ pu: user certified
▸ px: confidence degree of x
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The Llunatic Chase

Chasing with constraint
φ = ∀s, t(R(s) ∧ R(t) ∧ s[SSN] = t[SSN]→⋀

A
s[A] = t[A])

means that relevant cells are merged in order to satisfy ⋀A s[A] = t[A])
▸ Relevant cells: involved in errors of the constraint.

SSN Name Phone STR CITY #CC

⟨pu,222⟩ {⟨pc1,L. Lennon⟩, {⟨p0.9,122-1874⟩, {⟨p�,null⟩, {⟨pc6,SF⟩, {⟨pc10,7842554⟩,
⟨pc2,L. Lennon⟩} ⟨p0.1,102-111⟩} ⟨pc4,Fry⟩} ⟨pc7,SF⟩} ⟨pc11,7842545⟩}

⟨pu,111⟩ ⟨pc3,J. White⟩ ⟨p1,110-1000⟩ ⟨pc5,Maple⟩ ⟨pc9,NY⟩ ⟨pc12,1010101⟩

▸ This process continues for other constraints and errors.
▸ In each step, cells gather information (preference levels/values)
▸ Result: database with sets of preference level attribute pairs.
▸ Termination: cells grow in each step and there is an upper bound on information that can be

collected.
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LLunatic: Conflict Resolution

▸ Zoom in on a specific cell.
▸ It carries a set S of preference level/value pairs ⟨p1, v1⟩, . . . , ⟨pk, vk⟩

▸ conflict resolution is applied based on preference levels.

Definition
Given a set S = {⟨p1, v1⟩, . . . , ⟨pk, vk⟩} its preferred value is defined as

⎧⎪⎪⎨⎪⎪⎩

v if v is the value associated with the highest preference level
llun if no such value exist.

▸ Llun is special value indicating that insufficient information is available to repair the conflict to an
actual value.
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LLunatic: Conflict Resolution

SSN Name Phone STR CITY #CC

⟨pu,222⟩ {⟨pc1,L. Lennon⟩, {⟨p0.9,122-1874⟩, {⟨p�,null⟩, {⟨pc6,SF⟩, {⟨pc10,7842554⟩,
⟨pc2,L. Lennon⟩} ⟨p0.1,102-111⟩} ⟨pc4,Fry⟩} ⟨pc7,SF⟩} ⟨pc11,7842545⟩}

⟨pu,111⟩ ⟨pc3,J. White⟩ ⟨p1,110-1000⟩ ⟨pc5,Maple⟩ ⟨pc9,NY⟩ ⟨pc12,1010101⟩

Preferred values:
▸ {⟨pc1,L. Lennon⟩, ⟨pc1,L. Lennon⟩}: L. Lennon
▸ {⟨p0.1,102-111⟩, ⟨p0.9,122-1874⟩}: 122-1874
▸ {⟨p�,null⟩, ⟨pc4,Fry⟩}: Fry
▸ {⟨pc6,SF⟩, ⟨pc7,SF⟩}: SF
▸ {⟨pc10,7842554⟩, ⟨pc11,7842545⟩}: llun.
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▸ Preferred values are obtained based on all constraints and errors in the data.
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Llunatic: Final Repair

▸ Preferred values are put in cells: Repair.

SSN Name Phone STR CITY #CC

222 L. Lennon 122-1874 Fry SF llun
111 J. White 110-1000 Maple NY 1010101

▸ Llunatic comes with a variety of preference levels encoding
▸ User, data from master data, constants in constraints, ...

▸ Provides fine-grained control of the chase by
▸ using cost functions to only perform changes that minimize the cost function

▸ Also allows left-hand side repairs
▸ basically disabling constraints.

Rhttps://github.com/donatellosantoro/Llunatic
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Conflict graph-based repairing

We next discuss repair algorithm Holistic:
RX. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into context. ICDE 2013

Underlying idea:
1. Consider simple denial constraints
2. Encode all violations of constraints as a conflict hypergraph
3. Find a minimal vertex cover of this hypergraph
4. Collect information from the cover to resolve conflicts
5. Repair the data accordingly, if new conflicts, repeat.
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Hypergraphs

Definition (hypergraph)
A hypergraph G = (V,E) is an extension of a graph in which the edges are sets of vertices. Edges are
called hyper edges.

Example of graph and hypergraph

hypergraphgraph
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Step 1: Detecting Errors

Errors
TID FN LN ROLE ZIP ST SAL

t1 Anne Nash E 85376 NY 110
t2 Mark White M 90012 NY 80
t3 Mark Lee E 85376 AZ 75

Two denial constraints:
e1 ∶ ¬(∃s, t R(s) ∧ R(t) ∧ s[ZIP] = t[ZIP] ∧ s[ST] ≠ t[ST])

which is just an FD: ZIP→ ST. and
e2 ∶ ¬(∃s, t R(s) ∧ R(t) ∧ s[ST] = t[ST] ∧ s[ROLE] = M ∧ t[ROLE] = E ∧ s[SAL] < t[SAL]),

requiring that “managers should earn more than employees when they live in the same state”.
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Step 2: Create Hypergraph

Conflict hypergraph
TID FN LN ROLE ZIP ST SAL

t1 Anne Nash E 85376 NY 110
t2 Mark White M 90012 NY 80
t3 Mark Lee E 85376 AZ 75

Conflict hypergraph:

t1[ROLE]

t2[ROLE]

t1[ZIP]

t3[ZIP]

t1[ST]

t2[ST]

t3[ST]

t1[SAL]

t2[SAL]
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Minimal Vertex Cover

Definition
Given a hypergraph G = (V,E). A minimal set of vertices that are intersecting with every hyperedge,

Example of covers for graph and hypergraph

hypergraphgraph

NP-hard problem. Good heuristics are available.
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Step 3: Find Minimal Vertex Cover

Minimal cover
In our conflict hypergraph: t1[ST] is a minimal cover

t1[ROLE]

t2[ROLE]

t1[ZIP]

t3[ZIP]

t1[ST]

t2[ST]

t3[ST]

t1[SAL]

t2[SAL]

▸ A repair can be found by changing the value of nodes in the minimal cover!
▸ Minimal number of changes!
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Step 4: Collect Repair Requirements

Extract a set of conditions (repair requirements) that need to be satisfied to resolve all violations

Repair conditions
Conditions on t1[ST]:
▸ For

e1 ∶ ¬(∃s, t R(s) ∧ R(t) ∧ s[ZIP] = t[ZIP] ∧ s[ST] ≠ t[ST])

change t1[st] into t3[st]
▸ For

e2 ∶ ¬(∃s, t R(s) ∧ R(t) ∧ s[ST] = t[ST] ∧ s[ROLE] = M ∧ t[ROLE] = E ∧ s[SAL] < t[SAL]),

change t1[st] into something different than t2[st].

In general, inspect constraints and identify constraints that would eliminate all current hyperedges (=no
previous conflicts)
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Step 4: Get Updates

A set of assignments satisfying the repair conditions, with minimal number of changed cells
⇒ Perhaps t1[st] = AZ?? Ok!

Step3: Get Updates

71

p A set of assignments satisfying the conditions, 
with minimal number of changed cells

t1.ST = t3.ST
t1.ST != t2.ST

ID FN LN ROLE ZIP ST SAL

105 Anne Nash E 85376 NY 110

211 Mark White M 90012 NY 80

386 Mark Lee E 85376 AZ 75

t1

t2

t3

AZGradually increase the number of cells that are going 
to be changed, until reach a solution

Suppose we only want to change t1.ST
t2.ST = NY
t3.ST = AZ

If not possible to find such a value: introduce a fresh constant different from anything else.
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Step 5: Repeat

▸ If the change incurs new conflicts: Repeat the whole procedure.

Termination is guaranteed since in the worst case all values have new “fresh” constants.
▸ Most constraint formalisms won’t detect errors on such datasets with only unique values.
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Holistic Repair

The Holistic repair algorithm
RX. Chu, I. F. Ilyas, and P. Papotti. Holistic data cleaning: Putting violations into context. ICDE 2013

▸ comes with many extra optmizations
▸ different (approximation) algorithms for finding mimial covers
▸ and heuristics to reduce the number of “fresh” constants...
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Probabilistic Repairing

Most notable example is Holoclean
RTheodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré, Holoclean: Holistic data repairs with probabilistic
inference, PVLDB 10 (2017)

Key ideas:
1. Associate random variables to cells in instances
2. Describe constraints (and other background knowledge) and relax these with weights
3. Probability distribution on possible worlds

▸ Most probable possible world=best repair
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Holoclean: Possible Worlds

▸ Each cell is assigned a variable.
▸ Assignments of these variables to domain values: possible world
▸RRecall Antoine’s, Benny and Jef’s lectures.

Possible world
TID Name Address City State Zip

t1 N1 S1 A1 ST1 Z1
t2 N2 S2 A2 ST2 Z2
t3 N3 S3 A3 ST3 Z3
t4 N4 S4 A4 ST4 Z4

Example assignment, corresponding to the actual dirty database:

TID Name Address City State Zip

t1 John Maple Av Chicago IL 60608
t2 John Maple Av Chicago IL 60609
t3 John Maple Av Chicago IL 60609
t4 Johnn Maple Av Cicago IL 60608
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HoloClean: Weighted Constraints

▸ Compile constraints and background knowledge in constraints+ weights.

Weighted constraints
TID Name Address City State Zip

t1 N1 S1 A1 ST1 Z1
t2 N2 S2 A2 ST2 Z2
t3 N3 S3 A3 ST3 Z3
t4 N4 S4 A4 ST4 Z4

Variables get assigned domains:
▸ Ni ← Domain(Name)
▸ Si ← Domain(Address)
▸ Ai ← Domain(City)
▸ STi ← Domain(State)
▸ Zi ← Domain(Zip)

Initial values get weights:
▸ Ni ← Initial(Ni, John),wi, for i = 1,2,3
▸ N4 ← Initial(N4, Johnn),w4.
▸ ...

These reflect prior information about
correctness of cell values.
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HoloClean: Weighted Constraints

Weighted constraints
TID Name Address City State Zip

t1 N1 S1 A1 ST1 Z1
t2 N2 S2 A2 ST2 Z2
t3 N3 S3 A3 ST3 Z3
t4 N4 S4 A4 ST4 Z4

Constraints get added:
▸ ∀s, t¬(R(s) ∧ R(t) ∧ s[ZIP] = t[ZIP] ∧ s[State] ≠ t[State]).
▸ ¬((Zi ∧ Zj) ∧ (STi ∧ STj))← Zi = Zj ∧ STi ≠ STj,w

If w = +∞, then this is a hard constraint.
If w < +∞, this is a soft constraint.

▸ Result: a set of weighted constraints on the random variables in cells.
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Holoclean: Weighted Possible Worlds

▸ Each assignment of variables results in a weighted possible world.

Definition
Let V a set of random variables and α an assignment of variables to domain values. Let Dα denote the
corresponding possible world. Given a set of weighted constraints (Σ,w) the weight of Dα

W(Dα,Σ,w) = ∑
φ∈Σ

W(Dα, φ,w)

where, intuitively,
W(Dα, φ,w) = w × f(size of the set of satisfying tuples).

This leads to a probability distribution on possible worlds:

Definition

ProbΣ,w(Dα) =
1
ZeW(Dα,Σ,w).
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HoloClean: Most Probable World

Problem statement
Find the assignment α such that ProbΣ,w(Dα) is maximized.

▸ Intractable problem: search is over all possible worlds
▸ HoloClean: lot of effort to make this scalable in practice.

Solving this problem:
▸ Efficient probabilistic inference techniques, factor graphs, ....
▸ Sampling, approximation, ...

See http://www.holoclean.io/
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HoloClean: Final Repair

▸ t2[ZIP] = 60608: probability 0.84
▸ t2[ZIP] = 60609: probability 0.16
▸ t4[CITY] =Chicago: probability 0.95
▸ t4[CITY] =Cicago: probability 0.05
▸ t4[Name] =John: probability 0.99
▸ t4[Name] =Johnn: probability 0.01

TID Name Address City State Zip

t1 John Maple Av Chicago IL 60608
t2 John Maple Av Chicago IL 60608
t3 John Maple Av Chicago IL 60608
t4 John Maple Av Cicago IL 60608
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Other Repair Approaches (partial list)

▸ Large-scale deduplication with constraints using dedupalog
▸ On approximating optimum repairs for functional dependency violations
▸ Guided data repair
▸ ERACER: a database approach for statistical inference and data cleaning
▸ Interaction between record matching and data repairing
▸ Towards certain fixes with editing rules and master data
▸ NADEEF: a commodity data cleaning system
▸ Data quality aware queries in collaborative information systems
▸ A unified model for data and constraint repair
▸ Holistic data cleaning: Putting violations into context
▸ GDR: a system for guided data repair
▸ Sampling from repairs of conditional functional dependency violations
▸ Continuous data cleaning
▸ Active repair of data quality rules
▸ Ranking for data repairs
▸ Descriptive and prescriptive data cleaning
▸ Repair checking in inconsistent databases: algorithms and complexity.
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Learning Repairs

Similar to error detection and explanation-based constraint discovery:
▸ Techniques start to shift to machine learning
▸ Learn good repair modification in a unsupervised, or semi-supervised way.

“ Data Cleaning is a Machine Learning Problem that Needs Data Systems. ”(Ihab Ilyas, ACM
SIGMOD blog post 2019)

▸ Interesting new repairing methods are around the corner...
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Concluding Remarks

▸ I have painted a positive picture of the constraint-based approach to data cleaning.

▸ There are, however, lots of things that need to be done:
▸ Open-source implementations
▸ Use cases
▸ Benchmarking
▸ Seamless integration of different components

▸ So, although there is ample room for further research (especially in the ML context)
▸ Engineering effort is needed to push forward this approach!!

▸ You’re invited to join this effort!
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Looking Ahead ...

▸ Use of machine learning techniques will become prominent

▸ Different constraints needed to clean labels of data for ML

▸ Constraint-based approach is currently being revisited for graph data (Semantic Web)

▸ Incremental, fast, approximate methods needed to deal with fast changing data.

▸ ....
More info:
RIhab F. Ilyas and Xu Chu, Data Cleaning, ACM Books, 2019

RIhab F. Ilyas and Xu Chu, Trends in Cleaning Relational Data: Consistency and Deduplications, Foundations and
Trends in Databases 2015.

RV. Ganti & A. Das Sarma, Data Cleaning: A Practical Perspective, Synthesis Lectures on Data Management, 2013.

RFoundations of Data Quality Management, by Wenfei Fan, Floris Geerts, Morgan & Claypool, 2012.

RHerzog, Scheuren & Winkler, Data Quality and Record Linkage Techniques, Springer, 2007
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