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Foundations of Databases by Abiteboul, Hull and Vianu - accessible at 

http://webdam.inria.fr/Alice/

Principles of Databases by Arenas, Barcelo, Libkin, Martens and P. - currently under 

development, a preliminary version is accessible at https://github.com/pdm-book/community



Data Model

mathematical abstraction for structuring the data 

independent from the physical implementation

a collection of data 

structured in some way

querying the data



• Many ad hoc data models before 1970

- Hard to work with

- Hard to reason about

• 1970: Relational Model by Edgar Frank Codd

- Data are stored in relations (or tables)

- Queried using a declarative language

- DBMS converts declarative queries into procedural queries that are 

optimized and executed

• Key Advantages

- Simple and clean mathematical model (based on logic)

- Separation of declarative and procedural

Edgar F. Codd 
(1923 - 2003)

Turing Award 1981 

Relational Model



Relational Databases

Database Schema: a finite set of relation names together with their attributes names

Flight origin:string destination:string airline:string

Airport code:string city:string

Database Instance: data conforming to the schema

VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

VIE Vienna
LHR London
LGW London
LGW Larnaca
GLA Glasgow
EDI Edinburgh

+



Relational Databases

Flight origin:string destination:string airline:string
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code:string city:string
VIE Vienna
LHR London
LGW London
LGW Larnaca
GLA Glasgow
EDI Edinburgh

• Ignore attribute types - data elements are coming 

from a countably infinite set Const (constant values)

• A relational database is a finite set of relational atoms



Relational Databases

Flight(VIE,LHR,BA),

Flight(LHR,EDI,BA),

Flight(LGW,GLA,U2),

Flight(LCA,VIE,OS),

Airport(VIE,Vienna),

Airport(LHR,London),

Airport(LGW,London),

Airport(LGW,Larnaca),

Airport(GLA,Glasgow),

Airport(EDI,Edinburgh)

…we will keep using the table representation without the attribute types



{z | ∃x∃y∃u∃v Airport(x,u)  ∧ u = ‘London’  ∧ Airport(y,v)  ∧ v = ‘Glasgow’  ∧ Flight(x,y,z)}

Querying Relational Databases

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LGW Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow



Querying Relational Databases

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LGW Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

???

{z | ∃x∃y∃u∃v Airport(x,u)  ∧ u = ‘London’  ∧ Airport(y,v)  ∧ v = ‘Glasgow’  ∧ Flight(x,y,z)}



Querying Relational Databases

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LGW Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

???

{z | ∃x∃y∃u∃v Airport(x,u)  ∧ u = ‘London’  ∧ Airport(y,v)  ∧ v = ‘Glasgow’  ∧ Flight(x,y,z)}



Querying Relational Databases

List the airlines that fly directly from London to Glasgow

Flight origin destination airline
VIE LHR BA
LHR EDI BA
LGW GLA U2
LCA VIE OS

Airport code city
VIE Vienna
LHR London
LGW London
LGW Larnaca
GLA Glasgow
EDI Edinburgh

???

we should specify that the code of an 

airport uniquely determines the city

{z | ∃x∃y∃u∃v Airport(x,u)  ∧ u = ‘London’  ∧ Airport(y,v)  ∧ v = ‘Glasgow’  ∧ Flight(x,y,z)}



Integrity Constraints

specify semantic properties that should be satisfied by 

every database instance of a certain schema

• Development of transparent and usable database schemas

• Play a crucial role in query optimization



Integrity Constraints

specify semantic properties that should be satisfied by 

every database instance of a certain schema

• Development of transparent and usable database schemas

• Optimizing the evaluation of queries

Functional Dependencies

&

Inclusion Dependencies



Functional & Inclusion Dependencies

Person p_id name Profession p_id pr_name

the id of a person uniquely determines that person

Person : {1} → {2}

the first attribute of Profession stores person ids

Profession[1] ⊆ Person[1]



Syntax of Functional Dependencies

A functional dependency (FD) ! over a schema S is an expression of the form

R : X → Y

where 

• R is a relation name of S

• X,Y ⊆ {1,…,arity(R)}  - arity(R) = #attributes of R

If X ∪ Y = {1,…,arity(R)}, then ! is called a key dependency, written as Key(R) = X

If ! is the only key of R, then it is called primary key



Syntax of Functional Dependencies

the id of a person uniquely determines that person

Person : {1} → {2}

or simply

Key(Person) = {1}

Person p_id name Profession p_id pr_name



Semantics of Functional Dependencies

A database instance D of a schema S satisfies an FD ! of the form R : X → Y over S,

denoted D ⊨ !, if, for each pair of atoms R(a1,…,an) and R(b1,…,bn) in D,

$X(a1,…,an) = $X(b1,…,bn)   ⇒ $Y(a1,…,an) = $Y(b1,…,bn)

We say that D satisfies a set Σ of FDs, denoted D ⊨ Σ, if D ⊨ ! for each ! ∈ Σ

projection - ${1,2,4}(a,b,c,d,e)  =  (a,b,d)



Semantics of Functional Dependencies

the id of a person uniquely determines that person

Person : {1} → {2}

or

∀x∀y (Person(x,y) ∧ Person(x,z) → y = z)

Person p_id name Profession p_id pr_name

special case of an equality-generating dependency - ∀x∀y ($(x) → x1 = x2)



Syntax of Inclusion Dependencies

An inclusion dependency (IND) ! over a schema S is an expression of the form

R[i1,…,ik] ⊆ P[j1,…,jk]

where 

• R and P are relation names of S

• (i1,…,ik) is a non-empty list of distinct integers from {1,…,arity(R)}

• (j1,…,jk) is a non-empty list of distinct integers from {1,…,arity(P)}



Semantics of Inclusion Dependencies

R[2,1] ⊆ P[1,3]

R att1 att2 att3

a b c
c d e

P att1 att2 att3



Semantics of Inclusion Dependencies

R[2,1] ⊆ P[1,3]

R att1 att2 att3

a b c
c d e

P att1 att2 att3

b ⋆ a



Semantics of Inclusion Dependencies

R[2,1] ⊆ P[1,3]

R att1 att2 att3

a b c
c d e

P att1 att2 att3

b ⋆ a
d ⋆ c



Semantics of Inclusion Dependencies

A database instance D of a schema S satisfies an IND ! of the form R[i1,…,ik] ⊆ P[j1,…,jk] 

over S, denoted D ⊨ !, if, for every R(a1,…,an) in D, there exists P(b1,…,bm) in D such that

$(i1,…,ik)(a1,…,an)  =  $(j1,…,jk)(b1,…,bn)

We say that D satisfies a set Σ of INDs, denoted D ⊨ Σ, if D ⊨ ! for each ! ∈ Σ



Semantics of Inclusion Dependencies

the first attribute of Profession stores person ids

Profession[1] ⊆ Person[1]

or

∀x∀y (Profession(x,y) → ∃z Person(x,z))

Person p_id name Profession p_id pr_name

special case of a tuple-generating dependency - ∀x∀y (%(x) → ∃z &(x))



Semantics of Inclusion Dependencies

R[2,1] ⊆ P[1,3]

or

∀x∀y∀z (R(x,y,z) → ∃w P(y,w,x))

R att1 att2 att3 P att1 att2 att3



Integrity Constraints - Basic Algorithmic Tasks

• Check whether a database is valid w.r.t. a set of constraints

• Discover new constraints from existing ones



Integrity Constraints - Basic Algorithmic Tasks

• Check whether a database is valid w.r.t. a set of constraints

• Discover new constraints from existing ones

Satisfaction

&

Logical Implication



Satisfaction of Constraints

FD-Satisfaction

Input: a database D of a schema S, and a set Σ of FDs over S

Output: true if D ⊨ Σ, and false otherwise 

IND-Satisfaction

Input: a database D of a schema S, and a set Σ of INDs over S

Output: true if D ⊨ Σ, and false otherwise 



Satisfaction of FDs

Theorem: FD-Satisfaction is feasible in polynomial time

Consider a database instance D of a schema S, and a set Σ of FDs over S. The following 

is an algorithm for FD-Satisfaction

which clearly runs in polynomial time

for every R : X → Y in Σ do

for each pair of atoms R(a1,…,an) and R(b1,…,bn) in D do

if #X(a1,…,an) = #X(b1,…,bn) and #Y(a1,…,an) ≠ #Y(b1,…,bn) then

return false

return true



Satisfaction of INDs

Theorem: IND-Satisfaction is feasible in polynomial time

Consider a database instance D of a schema S, and a set Σ of INDs over S. The following 

is an algorithm for IND-Satisfaction

which clearly runs in polynomial time

for every R[i1,…,ik] ⊆ P[j1,…,jk] in Σ do

for each atom R(a1,…,an) in D do

if there is no P(b1,…,bn) in D with #(i1,…, ik)(a1,…,an) = #(j1,…, jk)(b1,…,bn) then

return false

return true



Logical Implication of Constraints

A set Σ of constraints over a schema S implies a constraint " over S,

denoted Σ ⊨ ", if, for every database instance D of S, it holds that D ⊨ Σ⇒ D ⊨ "

FD-Implication

Input: a set Σ of FDs over a schema S, and an FD " over S

Output: true if Σ ⊨ ", and false otherwise 

IND-Implication

Input: a set Σ of INDs over a schema S, and an IND " over S

Output: true if Σ ⊨ ", and false otherwise 



Characterizing Implication for FDs

For an FD ! of the form R : X → Y, we define the set of relational atoms

Violate[!]  =  {R(x1,…,xn), R(y1,…,yn)}

where

• x1,…,xn,y1,…,yn are variables from a countably infinite set Var (disjoint from Const)

• for each distinct i,j ∈ {1,…,n}, xi ≠ xj and yi≠ yj

• for each i ∈ {1,…,n}, xi = yi iff i ∈ X

R att1 att2 att3

! = R : {2} → {3}

Violate[!]  =  {R(x1,x2,x3), R(y1,x2,y3)}

the prototypical set of 

atoms that violates !



Characterizing Implication for FDs

Given a set Σ of FDs over a schema S, and an FD " over S,

transform Violate["] into a finite set of relational atoms Violate["]Σ that satisfies Σ such that

# ⊨ % ⟺ Violate[%]# ⊨ %

acts as a “representative” of all the 

database instances of S that satisfy #

⇓

if Violate["]Σ ⊨ " then

return true

else

return false

We get an algorithm for FD-Implication:



• Structure-preserving functions between two objects of the same type

• A homomorphism from a set of atoms A to a set of atoms B is a function h : Terms(A) 

→ Terms(B) such that:

1. t is a constant of Const⇒ h(t) = t

2. R(t1,…,tk) ∈ A ⇒ h(R(t1,…,tk)) = R(h(t1),…,h(tk)) ∈ B

• If h(u) = v, where u and v are tuples of the same length over Terms(A) and Terms(B), 

respectively, then h is a homomorphism from (A,u) to (B,v)

• We write A → B if there exists a homomorphism from A to B, and (A,u) → (B,v) if 

there exists a homomorphism from (A,u) to (B,v)

Homomorphism

set of variables and constants in A



Homomorphism

h(A)
h

A

B

h : Terms(A) → Terms(B) that is the identity on constants



Homomorphism

R(x,a,y)

R(a,x,b)

S(x,c,y)

T(x,x,d)

A

B

R(a,a,b)

S(a,c,b)

T(a,a,d)

R(b,a,c) 

R(a,b,b)

S(b,c,c)

T(b,b,d)

(a,b,c,d are constants)



Homomorphism

R(x,a,y)

R(a,x,b)

S(x,c,y)

T(x,x,d)

h1

A

B

R(a,a,b)

S(a,c,b)

T(a,a,d)

R(b,a,c) 

R(a,b,b)

S(b,c,c)

T(b,b,d)

h1(A)

h1 = {a ↦ a, b ↦ b, c ↦ c, d ↦ d, x ↦ a, y ↦ b}

(a,b,c,d are constants)



Homomorphism

R(x,a,y)

R(a,x,b)

S(x,c,y)

T(x,x,d)

h2

A

B

R(a,a,b)

S(a,c,b)

T(a,a,d)

R(b,a,c) 

R(a,b,b)

S(b,c,c)

T(b,b,d)

h2(A)

(a,b,c,d are constants)

h2 = {a ↦ a, b ↦ b, c ↦ c, d ↦ d, x ↦ b, y ↦ c}



“Representative” Set of Atoms

Violate[!]Σ

D1 D2

. . . 

Dn

. . . 

h1
h2

hn

1. Violate[!]Σ satisfies Σ

2. For each database D such that Violate[!] → D and D ⊨ Σ, it holds that Violate[!]Σ → D



Characterizing Implication for FDs

acts as a “representative” of all the 

database instances of S that satisfy !

⇓

if Violate[#]Σ ⊨ # then

return true

else

return false

We get an algorithm for FD-Implication:

Given a set Σ of FDs over a schema S, and an FD # over S,

transform Violate[#] into a finite set of relational atoms Violate[#]Σ that satisfies Σ such that

! ⊨ & ⟺ Violate[&]! ⊨ &



Characterizing Implication for FDs

Given a set Σ of FDs over a schema S, and an FD " over S,

transform Violate["] into a set of relational atoms Violate["]Σ that satisfies Σ such that

# ⊨ % ⟺ Violate[%]# ⊨ %

acts as a “representative” of all the 

database instances of S that satisfy #

⇓

if Violate["]Σ ⊨ " then

return true

else

return false

We get an algorithm for FD-Implication:

Chase Procedure

for FDs



FD-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3), R(y1,x2,y3)}
R : {2} → {1}

R : {1} → {3}
Σ =



FD-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3), R(y1,x2,y3)}
R : {2} → {1}

R : {1} → {3}
Σ =

{R(x1,x2,x3), R(y1,x2,y3)}



FD-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3), R(y1,x2,y3)}
R : {2} → {1}

R : {1} → {3}
Σ =

{R(x1,x2,x3), R(y1,x2,y3)}

{R(x1,x2,x3), R(x1,x2,y3)}



FD-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3), R(y1,x2,y3)}
R : {2} → {1}

R : {1} → {3}
Σ =

{R(x1,x2,x3), R(y1,x2,y3)}

{R(x1,x2,x3), R(x1,x2,y3)}

{R(x1,x2,x3), R(x1,x2,x3)}



FD-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3), R(y1,x2,y3)}
R : {2} → {1}

R : {1} → {3}
Σ =

{R(x1,x2,x3), R(y1,x2,y3)}

{R(x1,x2,x3), R(x1,x2,y3)}

{R(x1,x2,x3)}



FD-Chase: Applicability

Consider a finite (constant-free) set of atoms A, and an FD ! of the form R : X → Y

• ! is applicable to A with ((u1,…,un), (v1,…,vn)), where R(u1,…,un) and R(v1,…,vn) are 

atoms of A, if #X(u1,…,un) = #X(v1,…,vn) and #Y(u1,…,un) ≠ #Y(v1,…,vn)

• Let h(u,v) : Terms(A) → Terms(A) such that, for each w ∈ Terms(A),

• The result of applying ! to A with (u,v) is the set of atoms A’ = h(u,v)(A)  - A[&,(u,v)]A’

h(u,v)(w)  = 

ui if w = vi and  ui ≺ vi  for i ∈ {1,…,k}

vi if w = ui and  vi ≺ui  for i ∈ {1,…,k}

w otherwise

u v

(≺ - lexicographic order over Var)



{R(x1,x2,x3), R(y1,x2,y3)}

[R : {2} → {1}, ((x1,x2,x3),(y1,x2,y3))]

{R(x1,x2,x3), R(x1,x2,y3)}

[R : {1} → {3}, ((x1,x2,x3),(x1,x2,y3))]

{R(x1,x2,x3)}

FD-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3), R(y1,x2,y3)}
R : {2} → {1}

R : {1} → {3}
Σ =



FD-Chase: Chase Sequence

Consider a finite (constant-free) set of atoms A, and a set Σ of FDs

A finite chase sequence of A under Σ is a finite sequence of sets of atoms A0,…,An, where

• A = A0

• for each i ∈ {0,…,n-1}, there exists an FD # = R : X → Y in Σ, and atoms R(u) and R(v) in Ai 

such that Ai[#,(u,v)]Ai+1

• for every FD # = R : X → Y in Σ, and atoms R(u) and R(v) in A, # is not applicable to An

with (u,v)



FD-Chase: Chase Sequence

Consider a finite (constant-free) set of atoms A, and a set Σ of FDs

An infinite chase sequence of A under Σ is an infinite sequence A0,A1,… where

• A = A0

• for each i ≥ 0, there exists an FD # = R : X → Y in Σ, and atoms R(u) and R(v) in Ai 

such that Ai[#,(u,v)]Ai+1



FD-Chase: Chase Homomorphism

Consider a finite (constant-free) set of atoms A, and a set Σ of FDs

For a finite chase sequence s = A0,…,An of A under Σ such that

A0["0,(u0,v0)]A1["1,(u1,v1)]A2 ⋯ An-1["n-1,(un-1,vn-1)]An

we define its chase homomorphsim, denoted hs, as the composition of functions

h(u0,v0) ∘ h(u1,v1) ∘ ⋯ ∘ h(un,vn)

hs(A0)  =  hs(A)  =  An



FD-Chase: Key Properties

Consider a finite (constant-free) set of atoms A, and a set Σ of FDs

• There is no infinite chase sequence of A under Σ

• Let A0,…,An and B0,…,Bm be finite chase sequences of A under Σ. Then An = Bm

⇒ we can refer to the result of the chase of A under Σ, denoted Chase(A,Σ)

⇒ we can refer to the chase homomorphism of A under Σ, denoted hA,Σ

• Chase(A,Σ) ⊨ Σ

• Chase(A,Σ) can be computed in polynomial time

• Let A’ be a set of atom such that (A,u) → (A’,v) and A’ ⊨ Σ. Then (Chase(A,Σ),hA,Σ(u)) → (A’,v)



Characterizing Implication for FDs

Proposition: Consider a set Σ of FDs over a schema S, and an FD " over S. It holds that

Σ ⊨ " ⟺ Chase(Violate["],Σ) ⊨ "

⇓

⇓

Theorem: FD-Implication is feasible in polynomial time

if Chase(Violate["],Σ) ⊨ " then

return true

else

return false

We get an algorithm for FD-Implication:



Recap

• Integrity constraints - specify semantic properties

• Syntax and semantics of FDs and INDs

• Basic algorithmic tasks: satisfaction and logical implication

• Both FD- and IND-Satisfaction are feasible in polynomial time

• FD-Implication is feasible in polynomial time - FD-Chase our main tool



Characterizing Implication for INDs

For an IND ! of the form R[i1,…,ik] ⊆ P[j1,…,jk], we define the singleton set

Violate[!]  =  {R(x1,…,xn)}

where x1,…,xn are distinct variables 

R att1 att2 att3

! = R[2,1] ⊆ P[1,3]

Violate[!]  =  {R(x1,x2,x3)}

the prototypical set of 

atoms that violates !

P att1 att2 att3



Characterizing Implication for INDs

Given a set Σ of INDs over a schema S, and an IND " over S,

transform Violate["] into a finite set of relational atoms Violate["]Σ that satisfies Σ such that

# ⊨ % ⟺ Violate[%]# ⊨ %

acts as a “representative” of all the 

database instances of S that satisfy #

⇓

if Violate["]Σ ⊨ " then

return true

else

return false

We get an algorithm for IND-Implication:



Characterizing Implication for INDs

Given a set Σ of INDs over a schema S, and an IND " over S,

transform Violate["] into a finite set of relational atoms Violate["]Σ that satisfies Σ such that

# ⊨ % ⟺ Violate[%]# ⊨ %

acts as a “representative” of all the 

database instances of S that satisfy #

⇓

if Violate["]Σ ⊨ " then

return true

else

return false

We get an algorithm for IND-Implication:

Chase Procedure

for INDs



R[2] ⊆ P[1]

P[1,2] ⊆ P[2,1]
Σ =

IND-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3)}

P att1 att2 att3



R[2] ⊆ P[1]

P[1,2] ⊆ P[2,1]
Σ =

IND-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3)}

P att1 att2 att3

{R(x1,x2,x3)}



R[2] ⊆ P[1]

P[1,2] ⊆ P[2,1]
Σ =

IND-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3)}

P att1 att2 att3

{R(x1,x2,x3)}

{R(x1,x2,x3), P(x2,y1,y2)}



R[2] ⊆ P[1]

P[1,2] ⊆ P[2,1]
Σ =

IND-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3)}

P att1 att2 att3

{R(x1,x2,x3)}

{R(x1,x2,x3), P(x2,y1,y2)}

{R(x1,x2,x3), P(x2,y1,y2), P(y1,x2,y3)}



R[2] ⊆ P[1]

P[1,2] ⊆ P[2,1]
Σ =

IND-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3)}

P att1 att2 att3

{R(x1,x2,x3)}

{R(x1,x2,x3), P(x2,y1,y2)}

{R(x1,x2,x3), P(x2,y1,y2), P(y1,x2,y3)}



R[2,3] ⊆ R[1,3]Σ =

IND-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3)}

P att1 att2 att3

{R(x1,x2,x3)}

{R(x1,x2,x3), R(x2,y1,x3)}

{R(x1,x2,x3), R(x2,y1,x3), R(y1,y2,x3)}

{R(x1,x2,x3), R(x2,y1,x3), R(y1,y2,x3), R(y2,y3,x3)}

⋮



IND-Chase: Applicability

Consider a finite set of atoms A, and an IND ! of the form R[i1,…,ik] ⊆ P[j1,…,jk]

• ! is applicable to A with u = (u1,…,un) if R(u1,…,un) belongs to A

• Let New(!,u) = P(v1,…,vm), where, for each ℓ ∈ {1,…,m},

• The result of applying ! to A with u is the set of atoms A’ = A ∪ {New(!,u)}  - A[&,u]A’

vℓ = 

uir
if ℓ = jr for r ∈ {1,…k}

x[ℓ;!,u] ∈ Var \ Terms(A) otherwise



R[2] ⊆ P[1]

P[1,2] ⊆ P[2,1]
Σ =

IND-Chase by Example

R att1 att2 att3

A =  {R(x1,x2,x3)}

P att1 att2 att3

{R(x1,x2,x3)}

[R[2] ⊆ P[1], (x1,x2,x3)]

{R(x1,x2,x3), P(x2,y1,y2)}

[P[1,2] ⊆ P[2,1], (x2,y1,y2)]

{R(x1,x2,x3), P(x2,y1,y2), P(y1,x2,y3)}



IND-Chase: Chase Sequence

Consider a set of atoms A, and a set Σ of INDs

A finite chase sequence of A under Σ is a finite sequence of sets of atoms A0,…,An, where

• A = A0

• for each i ∈ {0,…,n-1}, there exists an IND # = R[i1,…,ik] ⊆ P[j1,…,jk] in Σ, and an atom 

R(u) ∈ Ai such that New(#,u) ∉ Ai and Ai[#,u]Ai+1

• for every IND # = R[i1,…,ik] ⊆ P[j1,…,jk] in Σ, and atom R(u) in A, New(#,u) ∈ An

The result of the chase sequence A0,…,An is the set of atoms An



IND-Chase: Chase Sequence

Consider a set of atoms A, and a set Σ of INDs

An infinite chase sequence of A under Σ is a finite sequence of sets of atoms A0,A1,… where

• A = A0

• for each i ≥ 0, there exists an IND # = R[i1,…,ik] ⊆ P[j1,…,jk] in Σ, and an atom R(u) Ai such 

that New(#,u) ∉ Ai and Ai[#,u]Ai+1

• for each i ≥ 0, and for each IND # = R[i1,…,ik] ⊆ P[j1,…,jk] in Σ and atom R(u) in Ai such 

that # is applicable to Ai with u, there exists j > i such that New(#,u) ∈ Aj - fairness



IND-Chase: Fairness

R[2] ⊆ R[1]

R[1] ⊆ P[1]
Σ =

R att1 att2

A =  {R(x1,x2)}

P att1 att2

{R(x1,x2)}

{R(x1,x2), R(x2,x3)}

{R(x1,x2), R(x2,x3), R(x3,x4)}

{R(x1,x2), R(x2,x3), R(x3,x4), R(x4,x5)}

⋮



IND-Chase: Fairness

R[2] ⊆ R[1]

R[1] ⊆ P[1]
Σ =

R att1 att2

A =  {R(x1,x2)}

P att1 att2

{R(x1,x2)}

{R(x1,x2), R(x2,x3)}

{R(x1,x2), R(x2,x3), R(x3,x4)}

{R(x1,x2), R(x2,x3), R(x3,x4), R(x4,x5)}

⋮

does not satisfy $



IND-Chase: Chase Sequence

Consider a set A, and a set Σ of INDs

An infinite chase sequence of A under Σ is a finite sequence of sets of atoms A0,A1,… where

• A = A0

• for each i ≥ 0, there exists an IND # = R[i1,…,ik] ⊆ P[j1,…,jk] in Σ, and an atom R(u) Ai such 

that New(#,u) ∉ Ai and Ai[#,u]Ai+1

• for each i ≥ 0, and for each IND # = R[i1,…,ik] ⊆ P[j1,…,jk] in Σ and atom R(u) in A such 

that # is applicable to A with u, there exists j > i such that New(#,u) ∈ Aj - fairness

The result of the chase sequence A0,A1,… is the set of atoms A0 ∪ A1 ∪ ⋯



IND-Chase: Key Properties

Consider a finite set of atoms A, and a set Σ of INDs

• All chase sequences of A under Σ are either finite or infinite

• Let A0,…,An and B0,…,Bm be finite chase sequences of A under Σ. Then An = Bm

• Let A0,A1,… and B0,B1,… be infinite chase sequences of A under Σ. Then ⋃Ai = ⋃Bi

⇒ we can refer to the result of the chase of A under Σ, denoted Chase(A,Σ)

• Chase(A,Σ) ⊨ Σ

• Let A’ be a set of atom such that (A,u) → (A’,v) and A’ ⊨ Σ. Then (Chase(A,Σ), u) → (A’,v)



Characterizing Unrestricted Implication for INDs

Proposition: Consider a set Σ of INDs over a schema S, and an IND " over S. It holds that

Σ ⊨unr " ⟺ Chase(Violate["],Σ) ⊨ "

Theorem: Consider a set Σ of INDs over a schema S, and an IND " over S. It holds that

Σ ⊨ " ⟺ Σ ⊨unr " - finite controllability of logical implication

A set Σ of INDs over a schema S implies without restriction an IND " over S,

denoted Σ ⊨unr ", if, for every (possibly infinite) database instance D of S, D ⊨ Σ⇒ D ⊨ "



Characterizing “Restricted” Implication for INDs

Proposition: Consider a set Σ of INDs over a schema S, and an IND " over S. It holds that

Σ ⊨unr " ⟺ Chase(Violate["],Σ) ⊨ "

Theorem: Consider a set Σ of INDs over a schema S, and an IND " over S. It holds that

Σ ⊨ " ⟺ Σ ⊨unr " - finite controllability of logical implication

⇓

Corollary: Consider a set Σ of INDs over a schema S, and an IND " over S. It holds that

Σ ⊨ " ⟺ Chase(Violate["],Σ) ⊨ "

A set Σ of INDs over a schema S implies without restriction an IND " over S,

denoted Σ ⊨unr ", if, for every (possibly infinite) database instance D of S, D ⊨ Σ⇒ D ⊨ "



An Algorithm for IND-Implication

Corollary: Consider a set Σ of INDs over a schema S, and an IND " over S. It holds that

Σ ⊨ " ⟺ Chase(Violate["],Σ) ⊨ "

⇓

if Chase(Violate["],Σ) ⊨ " then

return true

else

return false

We get an algorithm for IND-Implication:✘
the result of the chase might be infinite 



An Algorithm for IND-Implication

Consider a set Σ of INDs over a schema S, and an IND " = R[i1,…,ik] ⊆ P[j1,…,jk] over S

• We need to check whether Chase(Violate["],Σ) ⊨ "

• Recall that Violate["] = {R(x1,…,xn)}  ⇒ our task boils down to checking whether 

Chase(Violate["],Σ) contains an atom P(y1,…,yn) with &(i1,…, ik)(x1,…,xn)  =  &(j1,…, jk)(y1,…,yn)

• Construct non-deterministically, starting from R(x1,…,xn), a sequence of atoms via chase 

steps without storing more than two consecutive atoms

⇓

Theorem: IND-Implication is feasible in polynomial space



Recap

Satisfaction Implication

FDs PTIME PTIME

INDs PTIME PSPACE

implementing 

the semantics

checking whether 

Chase(Violate[!],Σ) ⊨ !

explicit construction 

of the chase

building portion of the chase, 

relying on finite controllability



Integrity Constraints 

&

Static Analysis of Queries



= Conjunctive Queries (CQ)

=  {σ,π,⋈}-fragment of relational algebra

=  relational calculus without ¬, ∀, ∨, =

=  simple SELECT-FROM-WHERE SQL queries 
= (only AND and equality in the WHERE clause)

A Core Relational Query Language



Q(x)  := ∃y (R1(v1) ∧ ⋯ ∧ Rm(vm))

Syntax of Conjunctive Queries

• R1,…,Rm are relation names

• x, y, v1,…,vm are tuples of variables

• each variable mentioned in vi appears either in x or y

• the variables in x are free called distinguished or output variables

It is very convenient to see conjunctive queries as rule-based queries of the form

Q(x)  :- R1(v1),…,Rm(vm)

this is called the body of Q that can be seen as a set of atoms



Conjunctive Queries: Example

Flight origin destination airline

VIE LHR BA

LHR EDI BA

LGW GLA U2

LCA VIE OS

Airport code city

VIE Vienna

LHR London

LGW London

LCA Larnaca

GLA Glasgow

EDI Edinburgh

List the airlines that fly directly from London to Glasgow

Q(z)  :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)



Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Flight(VIE,LHR,BA),

Flight(LHR,EDI,BA),

Flight(LGW,GLA,U2),

Flight(LCA,VIE,OS),

Airport(VIE,Vienna),

Airport(LHR,London),

Airport(LGW,London),

Airport(LCA,Larnaca),

Airport(GLA,Glasgow),

Airport(EDI,Edinburgh)

Q(z)  :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)



Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Flight(VIE,LHR,BA),

Flight(LHR,EDI,BA),

Flight(LGW,GLA,U2),

Flight(LCA,VIE,OS),

Airport(VIE,Vienna),

Airport(LHR,London),

Airport(LGW,London),

Airport(LCA,Larnaca),

Airport(GLA,Glasgow),

Airport(EDI,Edinburgh)

Q(z)  :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

{x ↦ LGW, y ↦ GLA, z↦ U2, 

London ↦ London, Glasgow ↦ Glasgow}



• Replace a query Q1 with a query Q2 that is easier to evaluate

• But, we have to guatantee that Q1(D) = Q2(D) for every database D

• This boils down to two containment checks: Q1⊆ Q2 and Q2⊆ Q1

CQ-Containment

Input: two conjunctive queries Q1 and Q2

Output: true if Q1 ⊆ Q2, and false otherwise 

Containment of CQs

Given two CQs Q1 and Q2 over a schema S, Q1 is contained in Q2, denoted Q1 ⊆ Q2, if 

Q1(D) ⊆ Q2(D) for every database instance D of S

Crucial task in 

query optimization



Homomorphism Theorem

A query homomorphism from Q1(x1,…,xk)  :- body1 to Q2(y1,…,yk)  :- body2

is a function h : Terms(body1) → Terms(body2) such that:

1. h is a homomorphism from body1 to body2

2. (h(x1),…,h(xk))  =  (y1,…,yk)

Homomorphism Theorem: Let Q1 and Q2 be conjunctive queries. It holds that

Q1  ⊆ Q2 ⟺ there exists a query homomorphism from Q2 to Q1



Homomorphism Theorem: Example

• h is a query homomorphism from Q2 to Q1 ⇒ Q1  ⊆ Q2

• But, there is no homomorphism from Q1 to Q2    ⇒ Q1  ⊂ Q2

Q1(x,y)  :- R(x,z), S(z,z), R(z,y)

Q2(t,u)  :- R(t,v), S(v,w), R(w,u)

h = {t ↦ x, u ↦ y, v ↦ z, w ↦ z}



Existence of a Query Homomorphism

Theorem: Let Q1 and Q2 be conjunctive queries. The problem of deciding whether 

there exists a query homomorphism from Q2 to Q1 is NP-complete

(NP-membership) Guess a function, and verify that is a query homomorphism

(NP-hardness) Reduction from 3-Colorability

By applying the homomorphism theorem we get that:

Corollary: CQ-Containment is NP-complete



Containment of CQs Under FDs

Q1 :- R(x,y), R(y,z), R(z,x), R(x,z)

Q2 :- R(x,y), R(y,y), R(y,x)

R att1 att2

there is no query homomorphism from Q2 to Q1 ⇒ Q1 is not contained in Q2

but, what if we focus on database instances that satisfy R : {1} → {2}?

Q1 is now contained in Q2



Containment of CQs Under INDs

Q1 :- R(x,y), R(y,z), R(z,x)

Q2 :- R(x,y), R(y,z), R(z,x), P(x,y,z)

R att1 att2

there is no query homomorphism from Q2 to Q1 ⇒ Q1 is not contained in Q2

but, what about if we focus on database instances that satisfy 

R[1,2] ⊆ P[1,2]     P[2,3] ⊆ R[1,2]     P[3,1] ⊆ R[1,2]?

Q1 is now contained in Q2

P att1 att2 att3



CQ-Containment-FD

Input: two conjunctive queries Q1 and Q2, and a set of Σ FDs

Output: true if Q1 ⊆Σ Q2, and false otherwise 

Containment of CQs Revisited

Given two CQs Q1 and Q2 over a schema S, and a set of constraints Σ over S, 

Q1 is contained in Q2 under #, denoted Q1 ⊆Σ Q2, if

Q1(D) ⊆ Q2(D) for every database instance D of S that satisfies Σ

CQ-Containment-IND

Input: two conjunctive queries Q1 and Q2, and a set of Σ INDs

Output: true if Q1 ⊆Σ Q2, and false otherwise 



Containment of CQs Revisited

acts as a “representative” of all 

the CQs over S that satisfy Σ

Given two CQs Q and Q’ over a schema S, and a set Σ of FDs/INDs over S,

transform Q into a finite CQ QΣ that satisfies Σ such that

Q⊆Σ Q’ ⟺ there exists a query homomorphism from Q’ to Q$



Containment of CQs Under FDs

Theorem: Let Q1(x) and Q2(y) be conjunctive queries, and Σ a set of FDs. It holds that

Q1 ⊆Σ Q2    ⟺ there exists a query homomorphism from Q2 to Chase(Q1,Σ)

⇓

Theorem: CQ-Containment-FD is NP-complete

its output tuple is hQ1,Σ(x)

(we assume constant-free CQs)



Unrestricted Containment of CQs Under Constraints

Given two CQs Q1 and Q2 over a schema S, and a set of constraints Σ over S, 

Q1 is contained in Q2 under " without restriction, denoted Q1 ⊆Σ,unr Q2, if

Q1(D) ⊆ Q2(D) for every (possibly infinite) database instance D of S that satisfies Σ



Unrestricted Containment of CQs Under INDs

Proposition: Let Q1 and Q2 be conjunctive queries, and Σ a set of INDs. It holds that

Q1 ⊆Σ,unr Q2    ⟺ there exists a query homomorphism from Q2 to Chase(Q1,Σ)

Theorem: Let Q1 and Q2 be conjunctive queries, and Σ a set of INDs. It holds that

Q1 ⊆Σ Q2 ⟺ Q1 ⊆Σ,unr Q2 - finite controllability of CQ-Containment-IND



“Restricted” Containment of CQs Under INDs

Proposition: Let Q1 and Q2 be conjunctive queries, and Σ a set of INDs. It holds that

Q1 ⊆Σ,unr Q2    ⟺ there exists a query homomorphism from Q2 to Chase(Q1,Σ)

Theorem: Let Q1 and Q2 be conjunctive queries, and Σ a set of INDs. It holds that

Q1 ⊆Σ Q2 ⟺ Q1 ⊆Σ,unr Q2 - finite controllability of CQ-Containment-IND

⇓

Corollary: Let Q1 and Q2 be conjunctive queries, and Σ a set of INDs. It holds that

Q1 ⊆Σ Q2    ⟺ there exists a query homomorphism from Q2 to Chase(Q1,Σ)



An Algorithm for CQ-Containment-IND

Let Q1 and Q2 be conjunctive queries, and Σ a set of INDs

• We need to check whether there exists a query homomorphism from Q2 to Chase(Q1,Σ)

• Non-deterministically construct a subquery Q’ of Chase(Q1,Σ) with at most |Q2| atoms, 

which can be done without storing more than 2⋅|Q2| atoms at each step

• Guess a function h, and verify that is a query homomorphism from Q2 to Q’

⇓

Theorem: CQ-Containment-IND is feasible in polynomial space



Recap

Satisfaction Implication CQ-Containment

FDs PTIME PTIME* NP*

INDs PTIME PSPACE** PSPACE**

implementing 

the semantics

checking whether 

Chase(Violate[!],Σ) ⊨ !

*explicit construction of the chase

**building portion of the chase, relying on finite controllability

checking for query hom. 

from Q2 to Chase(Q1,Σ)



Concluding Remark

• Computing data exchange solutions

• Computing certain answers in data integration settings

• Ontology-mediated query answering

• Data cleaning

• …

the chase procedure is a fundamental algorithmic tool

for reasoning with constraints


