Reasoning with Constraints

Andreas Pieris

University of Edinburgh & University of Cyprus

EDBT-Intented Summer School, Bordeaux, France, July 4 - 9, 2022

Foundations of Databases by Abiteboul, Hull and Vianu - accessible at http://webdam.inria.fr/Alice/

Principles of Databases by Arenas, Barcelo, Libkin, Martens and P. - currently under

development, a preliminary version is accessible at https://github.com/pdm-book/community

Data Model

mathematical abstraction for structuring the data

independent from the physical implementation

Relational Model

- Many ad hoc data models before 1970
 - Hard to work with
 - Hard to reason about

Edgar F. Codd (1923 - 2003) Turing Award 1981

- 1970: Relational Model by Edgar Frank Codd
 - Data are stored in relations (or tables)
 - Queried using a declarative language
 - DBMS converts declarative queries into procedural queries that are optimized and executed
- Key Advantages
 - Simple and clean mathematical model (based on logic)
 - Separation of declarative and procedural

Relational Databases

Database Schema: a finite set of relation names together with their attributes names

Flight origin	string desti	nation:string	airline:string
---------------	--------------	---------------	----------------

Airport code:string city:string

+

Database Instance: data conforming to the schema

VIE	LHR	BA
LHR	EDI	BA
LGW	GLA	U2
LCA	VIE	OS

VIE	Vienna
LHR	London
LGW	London
LGW	Larnaca
GLA	Glasgow
EDI	Edinburgh

Relational Databases

Flight	origin:string	destination:string	airline:string
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code:string	city:string
	VIE	Vienna
	LHR	London
	LGW	London
ng	LGW	Larnaca
ies)	GLA	Glasgow
	EDI	Edinburgh

- Ignore attribute types data elements are coming from a countably infinite set **Const** (constant values)
- A relational database is a *finite* set of relational atoms

Relational Databases

Flight(VIE,LHR,BA), Flight(LHR,EDI,BA), Flight(LGW,GLA,U2), Flight(LCA,VIE,OS), Airport(VIE,Vienna), Airport(LHR,London), Airport(LGW,London), Airport(CGW,Larnaca), Airport(GLA,Glasgow), Airport(EDI,Edinburgh)

...we will keep using the table representation without the attribute types

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LGW	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline		Airport	code	city
	VIE	LHR	BA			VIE	Vienna
	LHR	EDI	BA			LHR	London
	LGW	GLA	U2	???		LGW	London
	LCA	VIE	OS			LGW	Larnaca
				-		GLA	Glasgow

EDI

Edinburgh

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline		Airport	code	city
	VIE	LHR	BA			VIE	Vienna
	LHR	EDI	BA			LHR	London
	LGW	GLA	U2	???		LGW	London
	LCA	VIE	OS			LGW	Larnaca
				-		GLA	Glasgow

EDI

Edinburgh

List the airlines that fly directly from London to Glasgow

???

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city
	VIE	Vienna
	LHR	London
	LGW	London
	LGW	Larnaca
	GLA	Glasgow
	EDI	Edinburgh

we should specify that the code of an airport uniquely determines the city

Integrity Constraints

specify semantic properties that should be satisfied by <u>*every*</u> *database instance of a certain schema*

- Development of transparent and usable database schemas
- Play a crucial role in query optimization

Integrity Constraints

Functional & Inclusion Dependencies

the id of a person uniquely determines that person

 $Person: \{1\} \rightarrow \{2\}$

the first attribute of Profession stores person ids

 $Profession[1] \subseteq Person[1]$

Syntax of Functional Dependencies

A functional dependency (FD) σ over a schema S is an expression of the form

 $\mathsf{R}:\mathsf{X}\to\mathsf{Y}$

where

- R is a relation name of **S**
- $X,Y \subseteq \{1,...,arity(R)\}$ arity(R) = #attributes of R

If X U Y = {1,...,arity(R)}, then σ is called a **key dependency**, written as Key(R) = X

If σ is the only key of R, then it is called **primary key**

Syntax of Functional Dependencies

Person	p_id	name
--------	------	------

the id of a person uniquely determines that person

 $Person: \{1\} \rightarrow \{2\}$

or simply

Key(Person) = {1}

Semantics of Functional Dependencies

A database instance D of a schema S satisfies an FD σ of the form R : X \rightarrow Y over S,

denoted $D \models \sigma$, if, for each pair of atoms $R(a_1,...,a_n)$ and $R(b_1,...,b_n)$ in D,

$$\pi_{X}(a_{1},...,a_{n}) = \pi_{X}(b_{1},...,b_{n}) \implies \pi_{Y}(a_{1},...,a_{n}) = \pi_{Y}(b_{1},...,b_{n})$$

$$\int das a_{1,2,4}(a,b,c,d,e) = (a,b,d)$$

We say that D satisfies a set Σ of FDs, denoted D $\models \Sigma$, if D $\models \sigma$ for each $\sigma \in \Sigma$

Semantics of Functional Dependencies

Person p_id r	ame
---------------	-----

the id of a person uniquely determines that person

Person : $\{1\} \rightarrow \{2\}$

or

$\forall x \forall y (Person(x,y) \land Person(x,z) \rightarrow y = z)$

special case of an equality-generating dependency - $\forall x \forall y \ (\phi(\mathbf{x}) \rightarrow x_1 = x_2)$

Syntax of Inclusion Dependencies

An inclusion dependency (IND) σ over a schema S is an expression of the form

$\mathsf{R}[\mathsf{i}_1,...,\mathsf{i}_k] \subseteq \mathsf{P}[\mathsf{j}_1,...,\mathsf{j}_k]$

where

- R and P are relation names of **S**
- (i₁,...,i_k) is a non-empty list of distinct integers from {1,...,arity(R)}
- (j₁,...,j_k) is a non-empty list of distinct integers from {1,...,arity(P)}

R	att ₁	att ₂	att ₃
	а	b	С
	С	d	е

Ρ	att_1	att ₂	att ₃

 $R[2,1] \subseteq P[1,3]$

R	att ₁	att ₂	att ₃	Р	att ₁	att ₂	att ₃
	а	b	С	 →	b	*	а
	С	d	е				

 $R[2,1] \subseteq P[1,3]$

R	att ₁	att ₂	att ₃	Р	att ₁	att ₂	att ₃
	а	b	С		b	*	а
	С	d	е	 →	d	*	С

 $R[2,1] \subseteq P[1,3]$

A database instance D of a schema **S** satisfies an IND σ of the form $R[i_1,...,i_k] \subseteq P[j_1,...,j_k]$ over **S**, denoted $D \models \sigma$, if, for every $R(a_1,...,a_n)$ in D, there exists $P(b_1,...,b_m)$ in D such that

$$\pi_{(i_1,...,i_k)}(a_1,...,a_n) = \pi_{(j_1,...,j_k)}(b_1,...,b_n)$$

We say that D satisfies a set Σ of INDs, denoted D $\models \Sigma$, if D $\models \sigma$ for each $\sigma \in \Sigma$

Person p_id	name
-------------	------

the first attribute of Profession stores person ids

 $Profession[1] \subseteq Person[1]$

or

 $\forall x \forall y \text{ (Profession}(x,y) \rightarrow \exists z \text{ Person}(x,z))$

special case of a tuple-generating dependency - $\forall x \forall y \ (\phi(\mathbf{x}) \rightarrow \exists \mathbf{z} \ \psi(\mathbf{x}))$

R att ₁ att ₂ att ₃	Р	att ₁	att ₂	att ₃	
---	---	------------------	------------------	------------------	--

$R[2,1] \subseteq P[1,3]$

or

$\forall x \forall y \forall z \ (R(x,y,z) \rightarrow \exists w \ P(y,w,x))$

Integrity Constraints - Basic Algorithmic Tasks

• Check whether a database is valid w.r.t. a set of constraints

• Discover new constraints from existing ones

Integrity Constraints - Basic Algorithmic Tasks

Satisfaction of Constraints

FD-Satisfaction

Input: a database D of a schema **S**, and a set Σ of FDs over **S**

Output: true if $D \models \Sigma$, and **false** otherwise

IND-Satisfaction

Input: a database D of a schema **S**, and a set Σ of INDs over **S**

Output: true if $D \models \Sigma$, and **false** otherwise

Satisfaction of FDs

Theorem: FD-Satisfaction is feasible in polynomial time

Consider a database instance D of a schema **S**, and a set Σ of FDs over **S**. The following is an algorithm for **FD-Satisfaction**

for every $R : X \rightarrow Y$ in Σ do

for each pair of atoms R(a₁,...,a_n) and R(b₁,...,b_n) in D do if $\pi_X(a_1,...,a_n) = \pi_X(b_1,...,b_n)$ and $\pi_Y(a_1,...,a_n) \neq \pi_Y(b_1,...,b_n)$ then return **false**

return true

which clearly runs in polynomial time

Satisfaction of INDs

Theorem: IND-Satisfaction is feasible in polynomial time

Consider a database instance D of a schema S, and a set Σ of INDs over S. The following is an algorithm for IND-Satisfaction

for every $R[i_1,...,i_k] \subseteq P[j_1,...,j_k]$ in Σ do

for each atom R(a₁,...,a_n) in D do if there is no P(b₁,...,b_n) in D with $\pi_{(i_1,...,i_k)}(a_1,...,a_n) = \pi_{(j_1,...,j_k)}(b_1,...,b_n)$ then return **false**

return true

which clearly runs in polynomial time

Logical Implication of Constraints

A set Σ of constraints over a schema **S** implies a constraint σ over **S**,

denoted $\Sigma \vDash \sigma$, if, for every database instance D of **S**, it holds that $D \vDash \Sigma \Rightarrow D \vDash \sigma$

FD-Implication

Input: a set Σ of FDs over a schema **S**, and an FD σ over **S**

Output: true if $\Sigma \models \sigma$, and **false** otherwise

IND-Implication

Input: a set Σ of INDs over a schema **S**, and an IND σ over **S**

Output: true if $\Sigma \models \sigma$, and **false** otherwise

Characterizing Implication for FDs

For an FD σ of the form R : X \rightarrow Y, we define the set of relational atoms

Violate[σ] = {R(x₁,...,x_n), R(y₁,...,y_n)}

where

- x₁,...,x_n,y₁,...,y_n are variables from a countably infinite set **Var** (disjoint from **Const**)
- for each distinct i, $j \in \{1, ..., n\}$, $x_i \neq x_j$ and $y_i \neq y_j$
- for each $i \in \{1,...,n\}$, $x_i = y_i$ iff $i \in X$

the prototypical set of atoms that violates σ

R att ₁ att ₂ att ₃

Violate[σ] = {R(x₁,x₂,x₃), R(y₁,x₂,y₃)}

 $\sigma = \mathsf{R} : \{2\} \rightarrow \{3\}$

Characterizing Implication for FDs

Given a set Σ of FDs over a schema **S**, and an FD σ over **S**,

transform Violate[σ] into a *finite* set of relational atoms Violate[σ]_{Σ} that satisfies Σ such that

```
\Sigma \vDash \sigma \iff \text{Violate}[\sigma]_{\Sigma} \vDash \sigma
              acts as a "representative" of all the
             database instances of S that satisfy \Sigma
                                                     ∜
                                                                         if Violate[\sigma]<sub>\Sigma</sub> \vDash \sigma then
We get an algorithm for FD-Implication:
```

return true

else

return false

Homomorphism

• Structure-preserving functions between two objects of the same type

```
set of variables and constants in A
```

- A homomorphism from a set of atoms A to a set of atoms B is a function h : Terms(A)
 → Terms(B) such that:
 - 1. t is a constant of **Const** \Rightarrow h(t) = t
 - 2. $R(t_1,...,t_k) \in A \implies h(R(t_1,...,t_k)) = R(h(t_1),...,h(t_k)) \in B$
- If h(u) = v, where u and v are tuples of the same length over Terms(A) and Terms(B), respectively, then h is a homomorphism from (A,u) to (B,v)
- We write A → B if there exists a homomorphism from A to B, and (A,u) → (B,v) if there exists a homomorphism from (A,u) to (B,v)

Homomorphism

 $h : Terms(A) \rightarrow Terms(B)$ that is the identity on constants

Homomorphism

Homomorphism

 $h_1 = \{a \mapsto a, b \mapsto b, c \mapsto c, d \mapsto d, x \mapsto a, y \mapsto b\}$

Homomorphism

 $h_2 = \{a \mapsto a, b \mapsto b, c \mapsto c, d \mapsto d, x \mapsto b, y \mapsto c\}$

"Representative" Set of Atoms

- 1. Violate $[\sigma]_{\Sigma}$ satisfies Σ
- 2. For each database D such that Violate[σ] \rightarrow D and D $\models \Sigma$, it holds that Violate[σ]_{Σ} \rightarrow D

Characterizing Implication for FDs

Given a set Σ of FDs over a schema **S**, and an FD σ over **S**,

transform Violate[σ] into a *finite* set of relational atoms Violate[σ]_{Σ} that satisfies Σ such that

```
\Sigma \models \sigma \iff \text{Violate}[\sigma]_{\Sigma} \models \sigma
\int
acts as a "representative" of all the
database instances of S that satisfy \Sigma
\downarrow
if Violate[\sigma]_{\Sigma} \models \sigma then
return true
We get an algorithm for FD-Implication:
```

return **false**

else

Characterizing Implication for FDs

Given a set Σ of FDs over a schema **S**, and an FD σ over **S**,

transform Violate[σ] into a set of relational atoms Violate[σ]_{Σ} that satisfies Σ such that

$\mathbf{R} \mid \operatorname{att}_1 \mid \operatorname{att}_2 \mid \operatorname{att}_3$
--

$$A = \{R(x_1, x_2, x_3), R(y_1, x_2, y_3)\}$$

$$\Sigma = \left\{ \begin{array}{c} \mathsf{R} : \{2\} \to \{1\} \\ \\ \mathsf{R} : \{1\} \to \{3\} \end{array} \right\}$$

R att ₁ att ₂ att ₃

$$A = \{R(x_1, x_2, x_3), R(y_1, x_2, y_3)\}$$

$$\Sigma = \left\{ \begin{array}{c} \mathsf{R} : \{2\} \to \{1\} \\ \mathsf{R} : \{1\} \to \{3\} \end{array} \right\}$$

{R(x_1, x_2, x_3), R(y_1, x_2, y_3)}

R	att_1	att ₂	att ₃
---	---------	------------------	------------------

$$A = \{R(x_1, x_2, x_3), R(y_1, x_2, y_3)\}$$

$$\Sigma = \left\{ \begin{array}{c} \mathsf{R} : \{2\} \to \{1\} \\ \\ \mathsf{R} : \{1\} \to \{3\} \end{array} \right\}$$

 $\{R(x_1,x_2,x_3), R(y_1,x_2,y_3)\}$ $\{R(x_1,x_2,x_3), R(x_1,x_2,y_3)\}$

$$A = \{R(x_1, x_2, x_3), R(y_1, x_2, y_3)\}$$

$$\Sigma = \left\{ \begin{array}{c} \mathsf{R} : \{2\} \to \{1\} \\ \\ \mathsf{R} : \{1\} \to \{3\} \end{array} \right\}$$

 $\{ R(x_1, x_2, x_3), R(y_1, x_2, y_3) \}$ $\{ R(x_1, x_2, x_3), R(x_1, x_2, y_3) \}$ $\{ R(x_1, x_2, x_3), R(x_1, x_2, x_3) \}$

R	att_1	att ₂	att ₃
---	---------	------------------	------------------

$$A = \{R(x_1, x_2, x_3), R(y_1, x_2, y_3)\}$$

$$\Sigma = \left\{ \begin{array}{c} \mathsf{R} : \{2\} \to \{1\} \\ \\ \mathsf{R} : \{1\} \to \{3\} \end{array} \right\}$$

 $\{R(x_1, x_2, x_3), R(y_1, x_2, y_3)\}$ $\{R(x_1, x_2, x_3), R(x_1, x_2, y_3)\}$ $\{R(x_1, x_2, x_3), R(x_1, x_2, y_3)\}$

FD-Chase: Applicability

•

Consider a finite (constant-free) set of atoms A, and an FD σ of the form R : X \rightarrow Y

 σ is applicable to A with $((u_1,...,u_n), (v_1,...,v_n))$, where $R(u_1,...,u_n)$ and $R(v_1,...,v_n)$ are

atoms of A, if $\pi_{X}(u_{1},...,u_{n}) = \pi_{X}(v_{1},...,v_{n})$ and $\pi_{Y}(u_{1},...,u_{n}) \neq \pi_{Y}(v_{1},...,v_{n})$

 \sim

• Let $h_{(u,v)}$: Terms(A) \rightarrow Terms(A) such that, for each $w \in$ Terms(A),

$$\begin{aligned} h_{(u,v)}(w) &= \left\{ \begin{array}{ll} u_i & \text{ if } w = v_i \text{ and } u_i \prec v_i \text{ for } i \in \{1,...,k\} \\ v_i & \text{ if } w = u_i \text{ and } v_i \prec u_i \text{ for } i \in \{1,...,k\} \\ w & \text{ otherwise } \\ (\prec - \text{lexicographic order over Var}) \end{aligned} \right. \end{aligned}$$

• The result of applying σ to A with (u,v) is the set of atoms A' = $h_{(u,v)}(A) - A[\sigma,(u,v)]A'$

R $ att_1 att_2 att_3 $

$$A = \{R(x_1, x_2, x_3), R(y_1, x_2, y_3)\} \qquad \Sigma = \begin{cases} R : \{2\} \to \{1\} \\ R : \{1\} \to \{3\} \end{cases}$$

 $\{R(x_1, x_2, x_3), R(y_1, x_2, y_3)\}\$ $[R : \{2\} \rightarrow \{1\}, ((x_1, x_2, x_3), (y_1, x_2, y_3))]\$ $\{R(x_1, x_2, x_3), R(x_1, x_2, y_3)\}\$ $[R : \{1\} \rightarrow \{3\}, ((x_1, x_2, x_3), (x_1, x_2, y_3))]\$ $\{R(x_1, x_2, x_3)\}\$

FD-Chase: Chase Sequence

Consider a finite (constant-free) set of atoms A, and a set Σ of FDs

A finite chase sequence of A under Σ is a finite sequence of sets of atoms A₀,...,A_n, where

- $A = A_0$
- for each i ∈ {0,...,n-1}, there exists an FD σ = R : X → Y in Σ, and atoms R(u) and R(v) in A_i
 such that A_i[σ,(u,v)]A_{i+1}
- for every FD σ = R : X → Y in Σ, and atoms R(u) and R(v) in A, σ is not applicable to A_n
 with (u,v)

Consider a finite (constant-free) set of atoms A, and a set Σ of FDs

An infinite chase sequence of A under Σ is an infinite sequence A₀, A₁,... where

- A = A₀
- for each i ≥ 0, there exists an FD σ = R : X → Y in Σ, and atoms R(u) and R(v) in A_i
 such that A_i[σ,(u,v)]A_{i+1}

FD-Chase: Chase Homomorphism

Consider a finite (constant-free) set of atoms A, and a set Σ of FDs

For a finite chase sequence $s = A_0, ..., A_n$ of A under Σ such that

 $A_0[\sigma_0, (\mathbf{u}_0, \mathbf{v}_0)] A_1[\sigma_1, (\mathbf{u}_1, \mathbf{v}_1)] A_2 \cdots A_{n-1}[\sigma_{n-1}, (\mathbf{u}_{n-1}, \mathbf{v}_{n-1})] A_n$

we define its chase homomorphsim, denoted h_s, as the composition of functions

$$h_{(u_0,v_0)} \circ h_{(u_1,v_1)} \circ \cdots \circ h_{(u_n,v_n)}$$

$$h_s(A_0) = h_s(A) = A_n$$

FD-Chase: Key Properties

Consider a finite (constant-free) set of atoms A, and a set Σ of FDs

- There is no infinite chase sequence of A under Σ
- Let $A_0,...,A_n$ and $B_0,...,B_m$ be finite chase sequences of A under Σ . Then $A_n = B_m$ \Rightarrow we can refer to **the** result of the chase of A under Σ , denoted Chase(A, Σ) \Rightarrow we can refer to **the** chase homomorphism of A under Σ , denoted $h_{A,\Sigma}$
- Chase(A, Σ) $\models \Sigma$
- Chase(A, Σ) can be computed in polynomial time
- Let A' be a set of atom such that $(A, \mathbf{u}) \rightarrow (A', \mathbf{v})$ and $A' \models \Sigma$. Then $(Chase(A, \Sigma), h_{A, \Sigma}(\mathbf{u})) \rightarrow (A', \mathbf{v})$

Characterizing Implication for FDs

Proposition: Consider a set Σ of FDs over a schema **S**, and an FD σ over **S**. It holds that

 $\Sigma \vDash \sigma \iff \text{Chase}(\text{Violate}[\sigma], \Sigma) \vDash \sigma$

₩

if Chase(Violate[σ], Σ) $\vDash \sigma$ then

return true

We get an algorithm for **FD-Implication**:

else

return false

₩

Theorem: FD-Implication is feasible in polynomial time

Recap

- Integrity constraints specify semantic properties
- Syntax and semantics of FDs and INDs
- Basic algorithmic tasks: satisfaction and logical implication
- Both **FD-** and **IND-Satisfaction** are feasible in polynomial time
- **FD-Implication** is feasible in polynomial time FD-Chase our main tool

Characterizing Implication for INDs

For an IND σ of the form $R[i_1,...,i_k] \subseteq P[j_1,...,j_k]$, we define the singleton set

```
Violate[\sigma] = {R(x<sub>1</sub>,...,x<sub>n</sub>)}
```

where x₁,...,x_n are distinct variables

the prototypical set of atoms that violates σ

R	att_1	att ₂	att ₃
Р	att_1	att_2	att_3

 $\sigma = \mathsf{R}[2,1] \subseteq \mathsf{P}[1,3]$

Violate[σ] = {R(x₁,x₂,x₃)}

Characterizing Implication for INDs

Given a set Σ of INDs over a schema **S**, and an IND σ over **S**,

transform Violate[σ] into a *finite* set of relational atoms Violate[σ]_{Σ} that satisfies Σ such that

```
\Sigma \vDash \sigma \iff \text{Violate}[\sigma]_{\Sigma} \vDash \sigma
              acts as a "representative" of all the
            database instances of S that satisfy \Sigma
                                                   ∜
                                                                       if Violate[\sigma]<sub>\Sigma</sub> \vDash \sigma then
                                                                              return true
We get an algorithm for IND-Implication:
                                                                       else
```

return false

Characterizing Implication for INDs

Given a set Σ of INDs over a schema **S**, and an IND σ over **S**,

transform Violate[σ] into a *finite* set of relational atoms Violate[σ]_{Σ} that satisfies Σ such that

e get an algorithm for IND-Implication:

 Γ violate[o]_{Σ} \vdash o then

return **true**

else

return **false**

R	att ₁	att ₂	att ₃
Р	att ₁	att ₂	att ₃

$$A = \{R(x_1, x_2, x_3)\} \qquad \Sigma = \begin{cases} R[2] \subseteq P[1] \\ P[1,2] \subseteq P[2,1] \end{cases}$$

R	att_1	att_2	att ₃
Р	att_1	att_2	att ₃

$$A = \{R(x_1, x_2, x_3)\} \qquad \Sigma = \begin{cases} R[2] \subseteq P[1] \\ P[1,2] \subseteq P[2,1] \end{cases}$$

 $\{R(x_1, x_2, x_3)\}$

R	att_1	att_2	att ₃
Р	att_1	att_2	att_3

$$A = \{R(x_1, x_2, x_3)\}$$
$$\Sigma = \begin{cases} R[2] \subseteq P[1] \\ P[1,2] \subseteq P[2,1] \end{cases}$$

 $\{R(x_1, x_2, x_3)\}$ $\{R(x_1, x_2, x_3), P(x_2, y_1, y_2)\}$

R	att ₁	att_2	att ₃
D		- 44	
Р	att ₁	att ₂	att ₃

$$A = \{R(x_1, x_2, x_3)\} \qquad \Sigma = \begin{cases} R[2] \subseteq P[1] \\ P[1,2] \subseteq P[2,1] \end{cases}$$

 $\{R(x_1, x_2, x_3)\}$ $\{R(x_1, x_2, x_3), P(x_2, y_1, y_2)\}$ $\{R(x_1, x_2, x_3), P(x_2, y_1, y_2), P(y_1, x_2, y_3)\}$

R	att ₁	att_2	att ₃
D		- 44	
Р	att ₁	att ₂	att ₃

$$A = \{R(x_1, x_2, x_3)\}$$
$$\Sigma = \begin{cases} R[2] \subseteq P[1] \\ P[1,2] \subseteq P[2,1] \end{cases}$$

 $\{R(x_1, x_2, x_3)\}$ $\{R(x_1, x_2, x_3), P(x_2, y_1, y_2)\}$ $\{R(x_1, x_2, x_3), P(x_2, y_1, y_2), P(y_1, x_2, y_3)\}$

R	att_1	att_2	att ₃
Р	att ₁	att ₂	att ₃

$$A = \{R(x_1, x_2, x_3)\} \qquad \Sigma = \left\{ R[2,3] \subseteq R[1,3] \right\}$$

 $\{R(x_1, x_2, x_3)\}$ $\{R(x_1, x_2, x_3), R(x_2, y_1, x_3)\}$ $\{R(x_1, x_2, x_3), R(x_2, y_1, x_3), R(y_1, y_2, x_3)\}$ $\{R(x_1, x_2, x_3), R(x_2, y_1, x_3), R(y_1, y_2, x_3), R(y_2, y_3, x_3)\}$

IND-Chase: Applicability

Consider a finite set of atoms A, and an IND σ of the form $R[i_1,...,i_k] \subseteq P[j_1,...,j_k]$

• σ is applicable to A with $\mathbf{u} = (u_1, ..., u_n)$ if $R(u_1, ..., u_n)$ belongs to A

• Let New(σ , **u**) = P(v₁,...,v_m), where, for each $\ell \in \{1,...,m\}$,

$$v_{\ell} = \begin{cases} u_{i_r} & \text{if } \ell = j_r \text{ for } r \in \{1, ..., k\} \\ \\ x[\ell; \sigma, u] \in Var \setminus Terms(A) & \text{otherwise} \end{cases}$$

• The result of applying σ to A with **u** is the set of atoms A' = A \cup {New(σ ,**u**)} - A[σ ,**u**]A'

R	att_1	att_2	att ₃
D	a ++	a tt	a tt
Р	all_1	all ₂	all ₃

$$A = \{R(x_1, x_2, x_3)\} \qquad \Sigma = \begin{cases} R[2] \subseteq P[1] \\ P[1,2] \subseteq P[2,1] \end{cases}$$

 $\{R(x_1, x_2, x_3)\}\$ $[R[2] \subseteq P[1], (x_1, x_2, x_3)]$ $\{R(x_1, x_2, x_3), P(x_2, y_1, y_2)\}$ $[P[1,2] \subseteq P[2,1], (x_2, y_1, y_2)]$ $\{R(x_1, x_2, x_3), P(x_2, y_1, y_2), P(y_1, x_2, y_3)\}$

IND-Chase: Chase Sequence

Consider a set of atoms A, and a set Σ of INDs

A finite chase sequence of A under Σ is a finite sequence of sets of atoms A₀,...,A_n, where

- $A = A_0$
- for each $i \in \{0,...,n-1\}$, there exists an IND $\sigma = R[i_1,...,i_k] \subseteq P[j_1,...,j_k]$ in Σ , and an atom $R(\mathbf{u}) \in A_i$ such that $New(\sigma, \mathbf{u}) \notin A_i$ and $A_i[\sigma, \mathbf{u}]A_{i+1}$
- for every IND $\sigma = R[i_1,...,i_k] \subseteq P[j_1,...,j_k]$ in Σ , and atom $R(\mathbf{u})$ in A, $New(\sigma,\mathbf{u}) \in A_n$

The result of the chase sequence $A_0, ..., A_n$ is the set of atoms A_n

IND-Chase: Chase Sequence

Consider a set of atoms A, and a set Σ of INDs

An infinite chase sequence of A under Σ is a finite sequence of sets of atoms A₀, A₁,... where

- $A = A_0$
- for each i ≥ 0, there exists an IND σ = R[i₁,...,i_k] ⊆ P[j₁,...,j_k] in Σ, and an atom R(u) A_i such that New(σ,u) ∉ A_i and A_i[σ,u]A_{i+1}
- for each $i \ge 0$, and for each IND $\sigma = R[i_1,...,i_k] \subseteq P[j_1,...,j_k]$ in Σ and atom $R(\mathbf{u})$ in A_i such

that σ is applicable to A_i with \mathbf{u} , there exists j > i such that $New(\sigma, \mathbf{u}) \in A_j$ - fairness

IND-Chase: Fairness

$$A = \{R(x_1, x_2)\} \qquad \Sigma = \begin{cases} R[2] \subseteq R[1] \\ R[1] \subseteq P[1] \end{cases}$$

 $\{R(x_1,x_2)\}$ $\{R(x_1,x_2), R(x_2,x_3)\}$ $\{R(x_1,x_2), R(x_2,x_3), R(x_3,x_4)\}$ $\{R(x_1,x_2), R(x_2,x_3), R(x_3,x_4), R(x_4,x_5)\}$

:

IND-Chase: Fairness

$$A = \{R(x_1, x_2)\} \qquad \Sigma = \begin{cases} R[2] \subseteq R[1] \\ R[1] \subseteq P[1] \end{cases}$$

IND-Chase: Chase Sequence

Consider a set A, and a set Σ of INDs

An infinite chase sequence of A under Σ is a finite sequence of sets of atoms A₀, A₁,... where

- $A = A_0$
- for each i ≥ 0, there exists an IND σ = R[i₁,...,i_k] ⊆ P[j₁,...,j_k] in Σ, and an atom R(u) A_i such that New(σ,u) ∉ A_i and A_i[σ,u]A_{i+1}
- for each $i \ge 0$, and for each IND $\sigma = R[i_1,...,i_k] \subseteq P[j_1,...,j_k]$ in Σ and atom $R(\mathbf{u})$ in A such

that σ is applicable to A with **u**, there exists j > i such that New(σ ,**u**) \in A_i - fairness

The result of the chase sequence A_0, A_1, \dots is the set of atoms $A_0 \cup A_1 \cup \dots$

IND-Chase: Key Properties

Consider a finite set of atoms A, and a set Σ of INDs

- All chase sequences of A under Σ are either finite or infinite
- Let $A_0,...,A_n$ and $B_0,...,B_m$ be finite chase sequences of A under Σ . Then $A_n = B_m$
- Let $A_0, A_1, ...$ and $B_0, B_1, ...$ be infinite chase sequences of A under Σ . Then $UA_i = UB_i$ \Rightarrow we can refer to **the** result of the chase of A under Σ , denoted Chase(A, Σ)
- Chase(A, Σ) $\vDash \Sigma$
- Let A' be a set of atom such that $(A, \mathbf{u}) \rightarrow (A', \mathbf{v})$ and $A' \models \Sigma$. Then $(Chase(A, \Sigma), \mathbf{u}) \rightarrow (A', \mathbf{v})$

Characterizing Unrestricted Implication for INDs

A set Σ of INDs over a schema **S** implies without restriction an IND σ over **S**, denoted $\Sigma \vDash_{unr} \sigma$, if, for every (**possibly infinite**) database instance D of **S**, $D \vDash \Sigma \Rightarrow D \vDash \sigma$

Proposition: Consider a set Σ of INDs over a schema **S**, and an IND σ over **S**. It holds that $\Sigma \vDash_{unr} \sigma \iff Chase(Violate[\sigma], \Sigma) \vDash \sigma$

Theorem: Consider a set Σ of INDs over a schema **S**, and an IND σ over **S**. It holds that $\Sigma \models \sigma \iff \Sigma \models_{unr} \sigma$ - finite controllability of logical implication
Characterizing "Restricted" Implication for INDs

A set Σ of INDs over a schema **S** implies without restriction an IND σ over **S**, denoted $\Sigma \vDash_{unr} \sigma$, if, for every (**possibly infinite**) database instance D of **S**, $D \vDash \Sigma \Rightarrow D \vDash \sigma$

Proposition: Consider a set Σ of INDs over a schema **S**, and an IND σ over **S**. It holds that $\Sigma \vDash_{unr} \sigma \iff Chase(Violate[\sigma], \Sigma) \vDash \sigma$

Theorem: Consider a set Σ of INDs over a schema **S**, and an IND σ over **S**. It holds that $\Sigma \vDash \sigma \iff \Sigma \vDash_{unr} \sigma$ - finite controllability of logical implication

∜

Corollary: Consider a set Σ of INDs over a schema **S**, and an IND σ over **S**. It holds that $\Sigma \models \sigma \iff \text{Chase}(\text{Violate}[\sigma], \Sigma) \models \sigma$

An Algorithm for IND-Implication

Corollary: Consider a set Σ of INDs over a schema **S**, and an IND σ over **S**. It holds that

 $\Sigma \vDash \sigma \iff \text{Chase}(\text{Violate}[\sigma], \Sigma) \vDash \sigma$

the result of the chase might be infinite

An Algorithm for IND-Implication

Consider a set Σ of INDs over a schema **S**, and an IND $\sigma = R[i_1,...,i_k] \subseteq P[j_1,...,j_k]$ over **S**

- We need to check whether $Chase(Violate[\sigma], \Sigma) \vDash \sigma$
- Recall that Violate[σ] = {R(x₁,...,x_n)} ⇒ our task boils down to checking whether Chase(Violate[σ],Σ) contains an atom P(y₁,...,y_n) with π_(i₁,...,i_k)(x₁,...,x_n) = π_(j₁,...,j_k)(y₁,...,y_n)
- Construct non-deterministically, starting from R(x₁,...,x_n), a sequence of atoms via chase steps without storing more than two consecutive atoms

₩

Theorem: IND-Implication is feasible in **polynomial space**

Recap

Integrity Constraints

&

Static Analysis of Queries

A Core Relational Query Language

Conjunctive Queries (CQ)

- = $\{\sigma, \pi, \bowtie\}$ -fragment of relational algebra
- = relational calculus without \neg , \forall , \lor , =
- simple SELECT-FROM-WHERE SQL queries(only AND and equality in the WHERE clause)

- R₁,...,R_m are relation names
- **x**, **y**, **v**₁,...,**v**_m are tuples of variables
- each variable mentioned in vi appears either in x or y
- the variables in **x** are free called **distinguished** or **output variables**

It is very convenient to see conjunctive queries as rule-based queries of the form

$$Q(x) := R_1(v_1), ..., R_m(v_m)$$

this is called the body of Q that can be seen as a set of atoms

Conjunctive Queries: Example

List the airlines that fly directly from London to Glasgow

Flight	origin	destination	airline
	VIE	LHR	BA
	LHR	EDI	BA
	LGW	GLA	U2
	LCA	VIE	OS

Airport	code	city	
	VIE	Vienna	
	LHR	London	
	LGW	London	
	LCA	Larnaca	
	GLA	Glasgow	
	EDI	Edinburgh	

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Flight(VIE,LHR,BA), Flight(LHR,EDI,BA), Flight(LGW,GLA,U2), Flight(LCA,VIE,OS), Airport(VIE,Vienna), Airport(LHR,London), Airport(LGW,London), Airport(LCA,Larnaca), Airport(GLA,Glasgow), Airport(EDI,Edinburgh)

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Pattern Matching Problem

List the airlines that fly directly from London to Glasgow

Q(z) :- Airport(x,London), Airport(y,Glasgow), Flight(x,y,z)

Containment of CQs

Given two CQs Q_1 and Q_2 over a schema **S**, Q_1 is **contained** in Q_2 , denoted $Q_1 \subseteq Q_2$, if

 $Q_1(D) \subseteq Q_2(D)$ for every database instance D of **S**

CQ-Containment

Input: two conjunctive queries Q_1 and Q_2

Output: true if $Q_1 \subseteq Q_2$, and **false** otherwise

- Replace a query Q_1 with a query Q_2 that is easier to evaluate
- But, we have to guatantee that $Q_1(D) = Q_2(D)$ for every database D
- This boils down to two containment checks: $Q_1 \subseteq Q_2$ and $Q_2 \subseteq Q_1$

Homomorphism Theorem

A query homomorphism from $Q_1(x_1,...,x_k)$:- body₁ to $Q_2(y_1,...,y_k)$:- body₂ is a function h : Terms(body₁) \rightarrow Terms(body₂) such that:

- 1. h is a homomorphism from $body_1$ to $body_2$
- 2. $(h(x_1),...,h(x_k)) = (y_1,...,y_k)$

Homomorphism Theorem: Let Q_1 and Q_2 be conjunctive queries. It holds that $Q_1 \subseteq Q_2 \iff$ there exists a query homomorphism from Q_2 to Q_1

Homomorphism Theorem: Example

- h is a query homomorphism from Q_2 to $Q_1 \implies Q_1 \subseteq Q_2$
- But, there is no homomorphism from Q_1 to $Q_2 \implies Q_1 \subset Q_2$

Existence of a Query Homomorphism

Theorem: Let Q_1 and Q_2 be conjunctive queries. The problem of deciding whether there exists a query homomorphism from Q_2 to Q_1 is NP-complete

(NP-membership) Guess a function, and verify that is a query homomorphism (NP-hardness) Reduction from **3-Colorability**

By applying the homomorphism theorem we get that:

Corollary: CQ-Containment is NP-complete

Containment of CQs Under FDs

R	att_1	att ₂
---	---------	------------------

Q₁ :- R(x,y), R(y,z), R(z,x), R(x,z) Q₂ :- R(x,y), R(y,y), R(y,x)

there is no query homomorphism from Q_2 to $Q_1 \implies Q_1$ is not contained in Q_2

but, what if we focus on database instances that satisfy $R : \{1\} \rightarrow \{2\}$?

Q₁ is now contained in Q₂

Containment of CQs Under INDs

 $Q_1 := R(x,y), R(y,z), R(z,x)$

 Q_2 :- R(x,y), R(y,z), R(z,x), P(x,y,z)

there is no query homomorphism from Q_2 to $Q_1 \implies Q_1$ is not contained in Q_2

but, what about if we focus on database instances that satisfy

 $R[1,2] \subseteq P[1,2] \quad P[2,3] \subseteq R[1,2] \quad P[3,1] \subseteq R[1,2]?$

Q₁ is now contained in Q₂

Containment of CQs Revisited

Given two CQs Q_1 and Q_2 over a schema **S**, and a set of constraints Σ over **S**,

 Q_1 is **contained** in Q_2 **under** Σ , denoted $Q_1 \subseteq_{\Sigma} Q_2$, if

 $Q_1(D) \subseteq Q_2(D)$ for every database instance D of **S** that satisfies Σ

CQ-Containment-FD

Input: two conjunctive queries Q_1 and Q_2 , and a set of Σ FDs

Output: true if $Q_1 \subseteq_{\Sigma} Q_2$, and **false** otherwise

CQ-Containment-IND

Input: two conjunctive queries Q_1 and Q_2 , and a set of Σ INDs

Output: true if $Q_1 \subseteq_{\Sigma} Q_2$, and **false** otherwise

Containment of CQs Revisited

Given two CQs Q and Q' over a schema S, and a set Σ of FDs/INDs over S,

transform Q into a *finite* CQ Q_{Σ} that satisfies Σ such that

 $Q \subseteq_{\Sigma} Q' \iff$ there exists a query homomorphism from Q' to Q_{Σ} acts as a "representative" of all the CQs over **S** that satisfy Σ

Containment of CQs Under FDs

(we assume constant-free CQs)

Theorem: Let $Q_1(x)$ and $Q_2(y)$ be conjunctive queries, and Σ a set of FDs. It holds that

 $Q_1 \subseteq_{\Sigma} Q_2 \iff$ there exists a query homomorphism from Q_2 to Chase (Q_1, Σ) fits output tuple is $h_{Q_1, \Sigma}(\mathbf{x})$

₩

Theorem: CQ-Containment-FD is NP-complete

Unrestricted Containment of CQs Under Constraints

Given two CQs Q_1 and Q_2 over a schema **S**, and a set of constraints Σ over **S**,

 Q_1 is **contained** in Q_2 **under** Σ **without restriction**, denoted $Q_1 \subseteq_{\Sigma,unr} Q_2$, if

 $Q_1(D) \subseteq Q_2(D)$ for every (**possibly infinite**) database instance D of **S** that satisfies Σ

Unrestricted Containment of CQs Under INDs

Proposition: Let Q_1 and Q_2 be conjunctive queries, and Σ a set of INDs. It holds that

 $Q_1 \subseteq_{\Sigma,unr} Q_2 \iff$ there exists a query homomorphism from Q_2 to Chase (Q_1, Σ)

Theorem: Let Q_1 and Q_2 be conjunctive queries, and Σ a set of INDs. It holds that $Q_1 \subseteq_{\Sigma} Q_2 \iff Q_1 \subseteq_{\Sigma,unr} Q_2$ - finite controllability of CQ-Containment-IND

"Restricted" Containment of CQs Under INDs

Proposition: Let Q_1 and Q_2 be conjunctive queries, and Σ a set of INDs. It holds that

 $Q_1 \subseteq_{\Sigma,unr} Q_2 \iff$ there exists a query homomorphism from Q_2 to Chase (Q_1, Σ)

Theorem: Let Q_1 and Q_2 be conjunctive queries, and Σ a set of INDs. It holds that $Q_1 \subseteq_{\Sigma} Q_2 \iff Q_1 \subseteq_{\Sigma,unr} Q_2$ - finite controllability of CQ-Containment-IND

∜

Corollary: Let Q_1 and Q_2 be conjunctive queries, and Σ a set of INDs. It holds that $Q_1 \subseteq_{\Sigma} Q_2 \iff$ there exists a query homomorphism from Q_2 to Chase(Q_1, Σ)

An Algorithm for **CQ-Containment-IND**

Let Q_1 and Q_2 be conjunctive queries, and Σ a set of INDs

- We need to check whether there exists a query homomorphism from Q_2 to Chase(Q_1, Σ)
- Non-deterministically construct a subquery Q' of Chase(Q₁,Σ) with at most |Q₂| atoms, which can be done without storing more than 2·|Q₂| atoms at each step
- Guess a function h, and verify that is a query homomorphism from Q_2 to Q'

∜

Theorem: CQ-Containment-IND is feasible in polynomial space

Recap

	Satisfaction	Implication	CQ-Containment		
FDs	PTIME	PTIME*	NP*		
INDs	PTIME	PSPACE**	PSPACE**		
1		Ť			
implementing		checking whether	checking for qu	checking for query hom.	
the semantics		Chase(Violate[σ], Σ) $\vDash \sigma$	from <mark>Q</mark> 2 to Cha	from Q_2 to Chase(Q_1, Σ)	

*explicit construction of the chase

**building portion of the chase, relying on finite controllability

Concluding Remark

the chase procedure is a fundamental algorithmic tool for reasoning with constraints

- Computing data exchange solutions
- Computing certain answers in data integration settings
- Ontology-mediated query answering
- Data cleaning
- ...